US 20220012426A1

a2y Patent Application Publication o) Pub. No.: US 2022/0012426 A1

a9y United States

Ziemer

43) Pub. Date: Jan. 13, 2022

(54) CONFIGURABLE ONTOLOGY TO DATA
MODEL TRANSFORMATION

(71) Applicant: Jurgen Ziemer, Whitingham, VT (US)

(72) Inventor: Jurgen Ziemer, Whitingham, VT (US)
(21) Appl. No.: 16/985,414
(22) Filed: Aug. 5, 2020

Related U.S. Application Data

(60) Provisional application No. 62/883,767, filed on Aug.

7, 2019.
Publication Classification

(51) Int. CL

GOGF 40/284 (2006.01)

GOG6F 16/245 (2006.01)

GOG6F 16/248 (2006.01)

GOG6F 3/0481 (2006.01)

GOGF 3/0484 (2006.01)

100
> Ontology graph

Transformation/mapping

120 ~

(52) US.CL
CPC ... GOGF 40/284 (2020.01); GOGF 16/245
(2019.01); GOGF 3/0484 (2013.01); GO6F

3/0481 (2013.01); GOGF 16/248 (2019.01)

(57) ABSTRACT

A computer system, storage medium, and method are dis-
closed for transforming an ontology into a data model. A
user may configure transformation rules and ontology to
data model mapping.

In the first embodiment, the system comprises components
for extraction from a source ontology, transformation into an
entity-relationship model, load into particular data modeling
tools. Other embodiments comprise an extended configura-
tion, analytics, and user interface component.

The storage medium holds standardized metadata sets for
source ontology, a generic entity-relationship model repre-
sentation, and data modeling tool tool-specific metadata,
with machine-readable instructions to self-populate.

The method may use SPARQL to extract ontology metadata,
4GL language to transform ontology into data model meta-
data sets, and import files or direct access to load metadata
into the data modeling tool.

The system, storage medium, and method can operate in
reverse, transforming a data model into an ontology.

Conceptual Data Model

Class to Entity

i
170 ~
Object Property to Associative Entity

Subclass to Inheritance (subtype}

Class restrictions, domain and range
determine Relationships and cardinality

| Banx Acsount kenifer

US 2022/0012426 Al

Jan. 13,2022 Sheet 1 of 23

Patent Application Publication

ls3gpuepl IOy Hue g |

T 94

AjljeujpJed pue sdiysuojie|ay aujw.alap
28ueJ pue uleWOP ‘SUOJIDIIISAJ SSB|D

/

. e

SRERE

DR T

Al13u3 aA1leID0SsY 01 Aladoud 193[q0

(edA1gns) asueluayu| 01 sseppgns

Aju3 o1ssed

[9POIA eieQ |enidasuo)

N ozt

3uiddew /uonew.Jojsuel|

ydeud ASo|0up 00T

US 2022/0012426 Al

Jan. 13,2022 Sheet 2 of 23

Patent Application Publication

¢ O

09¢ Q5
aneAUL 1IN = sophieuy
ok <iURuodIoIs> L <<iuauoguiodss
T \\ \/w
. J
f/,f/, /
- /
iy i
] w;\
0S¢
SEC / Sve
U0 BLIIOSU B & o eindyun)
. <<iBauoduwioss <iudododsy
g /3
m ~
; ovT S
.
oge S 44
I
peol ey VoI BT
[swww)
LQUBUOGWIO oy << BuoGUIodS s

{LQOD) voEwLIOSURY] [PPOW B1EQ 03 ABojoluQ ajgrIndyuoD

S otz
O

saepul vodwy

~{Q0} Suijapopy eieq

3

3024i33U1 TOYWIS

,,,,,, wioneld ASojowp

US 2022/0012426 Al

Jan. 13,2022 Sheet 3 of 23

Patent Application Publication

0Z¢

199G Elepelon
21§129ds-j004

Bujjopo eleq

198 ByepeIsiy
diysuoney
-Aiu3

€€

195 e1epeIdnl
AdojouQ

uoRIRIXT |

O T T T
I | , .
£ N N ' \ /
__ i 09¢ :
08€ | Q i
2
ﬁmosﬁ N wm i i
, i COmmeuOuwﬁm,\ﬂr COWHWE.‘“O%WGW‘MP
S . A b A N i
Y
06€
j0o
sujepon
eled]

wuoeld
A8ojoiuQ

¥ 00€

US 2022/0012426 Al

Jan. 13,2022 Sheet 4 of 23

Patent Application Publication

¥ 'Ol

goremdyuon STy
. O%F
T T T T e e e T T T e e e e Eadhathasien i asdinesiinad |@
_ _ . t—
| ~ _ R
| ~ ! A
| _ ! w
. b R S
pu3 | +] 5% +] 557 | [+] &7 (+] %@ o
| oy L L eepeIay | | uoneusosuely o
| Buopopy o3ur peot WﬁmuSmS_ uHasURLL A i ASojomQ yoenx3 aunsyuo) m
vvvvvvvvvvvvvvvvvvvvvvvvv \“ N S vvvvv!\.m m, M./,vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv«
(41314 Aw m__w w 155 BIEPRIBN «"w my 185 elepeIRp
i i i diysuonepy/Anug i ; ABojouQ
O W _ b
Eob | _ S R
[Jooob N 0ov 4 S S 1 S B it \
N | b i !
| | N N |
,,,,,,,,,,, SIS i
| | i
I | "
i i . —
195 2IEPrIBIN | ! oty
10041 SPOWN ILPEIBA] AGOIOJIUQ mey
; : o e © T
i [¢747 Sty 1Y) %
! ovard ot
; Asonusaday S 40y (83747 o
i {spopy &g ASojug aoamos |)
N SN w 2
,I,g N n Q.

SSad%0ld uoijewiioisues j

US 2022/0012426 Al

Jan. 13,2022 Sheet 5 of 23

Patent Application Publication

- m@«f&? 5 m«..,v BG4 3R/ A8 SR s rBon prouneoepes s/ St adu gy =G
Qva.ﬁ\ﬁp\,\& 1 .."Fﬁxﬁ.«.\m ,MJ..BS«ﬁw.um&m SAvsanay L@
§ UMLREAs.s Eas TR ..ch.ﬁ c

i mv Sy % ka..u.:maf HRES 2

SRCEIRLGIL0] TG T
xm., » :3.. .qw\.a.,.‘vu%xw

TR

SATITRUTL
Lo :.i,.\ﬁ« .
.mzmu» .w,:um

e

.Mum .Jm..&uw.ﬁ.? WEE-

4y - D -3~

e a;.m&ﬂ

PRy m "w..«.,.m«.m AT G- B

ssmaseySopiBaspands i dinyg usu..ﬁucx.ﬁm.mﬁ‘? 139 pEr B
TR SR SGHS axeds

- BT - TG -
amgo.u&c g

H u...:.v»n.x{,.wm

iy w\ k]

.nm.vmtm.u.m TR
s umﬁm

US 2022/0012426 Al

Jan. 13,2022 Sheet 6 of 23

Patent Application Publication

A

edenr o

- ove

- 0£9

009

US 2022/0012426 Al

Jan. 13,2022 Sheet 7 of 23

Patent Application Publication

G

¢

0

Z

3

T

P3N0

-y

e

3

5]

§R54AL

4

ERT

b o)

B

¥

gAIRERY

138

gxFlos)

b ioe)

B4

¥ 00L

US 2022/0012426 Al

Jan. 13,2022 Sheet 8 of 23

Patent Application Publication

8 'Ol

018

HEiie

S s

o

5
Yy et

A RS A
HAREISE

ORGP R s

e} IO A D -

YR

LpEy
W

Qz8

US 2022/0012426 Al

Jan. 13,2022 Sheet 9 of 23

Patent Application Publication

016 ¥~ 006

US 2022/0012426 Al

Jan. 13,2022 Sheet 10 of 23

Patent Application Publication

0T 'Ol

OGS LT 3G

BEETEY

US 2022/0012426 Al

Jan. 13, 2022 Sheet 11 of 23

Patent Application Publication

O€TT

ocTL

FAREGRIT IO

011t

0011

US 2022/0012426 Al

Jan. 13, 2022 Sheet 12 of 23

Patent Application Publication

R

3o g

-y

~ QEZT

sy it

[s144)

244

0071

US 2022/0012426 Al

Augug
4 ™ ozet
by $19S B1EPRIDIA
S L A P Sgrer
a e d1193ds-jooL
S TR Nazer
R
N iy,
2
m Agey
o 4 ~~ oeer
=
S JURSS E—
B W Ayiug A
n. AT
E) et
euey” -
.m uonsanb wien A
m 4 et A ~~ over
2 ~ S1o6S elepelo
Dn.... wmey” : - } 19S BIEPBIDIN
i Doowien AguR o oTeT
= uopseyl | { RS diysuollejay-Ajug
=) A S T e
LT S T
= ST S— e - X $19S B1BpPEIDN
= : i
- wajeanby | O ssep ; Ag ot
-« TuoIAIsIY S SED O[ojuQo
- b LITETROTTR L
g g9t ~~o09¢T ™~ gser Y 00€T
=
(-

T 'Ol

5891 ————o OB OvFi SEVT

US 2022/0012426 Al

Ausdoid gng walao | OS0N sse() weeanb3| {ssepiedng
g8vT ﬂuﬂch
o UONOMISAY Auadoid 108lg0 Lo SobT
0SvT
ssepgnsg
en
™ Sivt
= 444 sfuey Auedod 10910 o
= oeFT “ o
- Ausdoid eldo
8 } o< 0Lt
= utewo Auedoid 1990 ++ 4y
» =0] i
R \
=) I SSEID }
a S Lo _
o] uonouisay Aladoid gjeq !
: W
<
J
S5vT ST 0%%1

.m sfiuey Aedold ejeq k=>o-4-{Auadoid Blag uielo(] Auedoid ejeq
=
2
= T~
= STy
= Ml ﬁ
= N R S
= 86v1 S6vT ! otvt i
m Rusdoug uoneiouuy | o< 180U0 s uDgRIoULY MVOLL»EmEQm ABojou0 :
o= 1 - H
=9
Ml Sov1
- +{ (snpowwt) ABojo0
=
£ .
<
A 00%1

US 2022/0012426 Al

Jan. 13,2022 Sheet 15 of 23

Patent Application Publication

orst

adAigng Algug aAlRIDOSSY

ST 'S

=0

—te -4 o

o<

Sval

diysuoneey aied

o

(393

diysuoneley piyo

<=

5551

diysuonejay feng

¥

gESt fest
adAuedng AU oAlRI00SSY Bo AU BARRIDOSSY
553
8dAigng >0
N\
1Y

piet o5t m
adAitedns o Al
;

peet 75T
wey ele(H o= eInqupy Anug

Y

¥

¥~ 0051

US 2022/0012426 Al

Jan. 13,2022 Sheet 16 of 23

Patent Application Publication

diysuonaoy

J@sRg

ipruoneossy

PER LIS 41

/
0CET
: §
AN DN BAGURILOG anssEGRRuRY |
i
UORIIOSSIBIE g o gl woipueegh |
i
i

oot ~~sp91

............
BANI2 AR |

St ™009T

US 2022/0012426 Al

Jan. 13,2022 Sheet 17 of 23

Patent Application Publication

(VA

MUl souejlsyY 3y

L1 Old

¥

ETYAN

Geit

It
souBjUsyYY o

o<

Vit
sied diysuoje|sy

saueilivyy IV pro—t—

Y744
Anud sAnRI00SSY

oS

0SLT

plyo diysuoneloy

—H<E3

MUl esuejueyYl = > o

SSLT

len@ diysuonelay

Y

SOLY

¥

— Anug

(VA

wey eleg H—o<E=jonqupy Agug

¥

0t SURPEG TUSou Ty

Siit

0041

8T 'Ol

US 2022/0012426 Al

0081

pug 0181
< Folt}
‘ - Y
/
I ovst T sauanb TDYYJS
[VLT
S 0587 3
-] lw}
— !
5 g
=5 —~
= £ o
[90] o =
s | g
o
g 2 | S
T e e e > T T —— o
a . 0981 gg8t | i 3 &
e i i uonewtofsuesy | i uolpenxsy i spadueyn o
i pe 3. |9 : 1) i H A
M n ©1 21n3yuo) " amdyuoy | aindyuod Wimm s3unes .uwu
h \ e e e e e e e e \\m e e e e emp e A m
[a B o
i ! { A
= ! ! i
= ! _ m e
< ! “ m 08T
= ! | uonesdyuon ! S8t |
— _ H B { “
= | f o | sguies adueyd |
= | i . pEEt m | &
= i m | puemanmay | G
= b e e e -2 oo —© | -
0 s T T N !
E <
= L M
<
oh
j=3
=%
«
~N
=
)
~N
&
="

US 2022/0012426 Al

Jan. 13,2022 Sheet 19 of 23

Patent Application Publication

Ayindoad

FRSBRS T B

0961

¥~ 0061

US 2022/0012426 Al

Jan. 13,2022 Sheet 20 of 23

Patent Application Publication

0¢ 'Ol

196 erepeIapy S00¢
ASojoug
. T, T ™~
gcoc | wes
| 090¢ eIy _\,;/,
suwexy ¢ N
< ! o
AN_W S I
! ST0¢ o
L o
.......................... ™ A\r/ m
pu3 + . 5E07 m
5196 BIBPRIDN | - i b i) a3
4s2435y ¢2184dwon m satenb aInoax3 Alo: dlenuepy W
/ < :
N g e J o]
5902 0 ~N 4 0s0C TR S702 5
i 550¢ “ " 5313NDTOYVAS
t ! | |
“ tor
" M rllﬁm Omw.ﬂﬁmvllJ_ s34
] | |
i [
¢ I 1
']]
| ! V¥ N 0T0¢
i | 0£0z |
" i {13sn)} ®)
| hd ssuanb uny | 3
[! g
") M ﬂ o MAnov
Smn,ﬁmE\Gmo“S:O Vi " o
Sty , =
! S%0C 201S 30 i 9
| ASgg omog | T T T T T T T 3

$Sad0.4 uoilewiojsues

US 2022/0012426 Al

Jan. 13, 2022 Sheet 21 of 23

Patent Application Publication

1¢ Old

pu3

SS1¢

1274
AJuaysisuo)

P3RS

0£lc
SpI039Y

v1egindod

é918p 0
dn juapuadag

A + i A weEs
| sapuspusdag | AN
. ounuexy ¥
S /
0TIz

|

0
<
o3
o\

Y$9.1}2Y SQN UOIBWLIOSUBS] 1T0D

SS32014d UOIIBWLIO SURS |

¥~ 0017

US 2022/0012426 Al

Jan. 13, 2022 Sheet 22 of 23

Patent Application Publication

¢C 'Ol

- e — S0cC
T &4 M [+] G50C HE
ERLTRCET i 1S elepela | i
sumwexy ysaiyoy w N/
ST¢C
P
/ R O
pu3 ! Sy e}
spslgo ok [
fpout s1essd u
A / o
y g
osce T g
|
] sajy Jodwy
| |
| :
! € | | S i
] =0 vodwy ayessy |
! i ‘
1 AN { :
| . S
1
! 01¢Ce
\
jw)
Asoyisoday m..
[opow £1eg i
i s
| (X
| v 0
Vo T Y =
N b orec @
N 310dw; W
— D,

$$830Ud UohBWIOfSuULe |

¥~ 0027

US 2022/0012426 Al

Jan. 13,2022 Sheet 23 of 23

Patent Application Publication

€C Ol

SOEC
uonEmduoD
Y414
T T e e e e e T e e e e e e o e e e -
f } ; ;
t - ;
! " ! N
i _ | &
! }
““““““““ oo N T S T S
pug 09¢¢ 0sg¢ (135%4 ozee uas e}
L P eepeIs) voneuuojsuRly Q
OA&!.!.&!.&! ABojorug oun peot i« Wmuauﬂesb wiojsues fA ' ppoeieg emg ¢ snByuon A,itt{ m
/ S) S R G o o
SLE2 PR ¢ oy ST SIfT
. _eepeRn | | X 135 BIRPRIBA i | 135 BIPPRIBIN | f _
ABojoaug {1y dwsuonepy/Mnug | Epon weq by
| | I W 1 ! e / Pty
OIET | oo | SR ! b SRET Lo
G e ! " LR) (SRS a-=t 1w N
m L ” | !
| ! N M i
““““““““ { R ./I/_“ ! w
t ! i
4 ! :
f ! aTES
! i mtoamvx 150 o1ee
Ol B1E
L Beoug oo - -
59t£¢ oveEl i :) m
-1 ot
...... 0I5 40Y uuopeld o SEEC + &
S ASojouQ 1818} PO Bea 3 o
3 2
A a2 o

SS9304d UOIIBWLIOSURL | 95I3A3Y

US 2022/0012426 Al

CONFIGURABLE ONTOLOGY TO DATA
MODEL TRANSFORMATION

TECHNICAL FIELD

[0001] This disclosure relates to model-driven engineer-
ing, more particularly, to systems for transforming Meta-
data.

BACKGROUND

[0002] Model-driven engineering (MDE) is a software
development methodology that exploits models, which are a
conceptualization of all topics related to a specific problem,
and transforms models into program code.

[0003] Data modeling tools are software applications that
provide a graphical environment to create Entity-Relation-
ship (E/R) models. The data modeling tool enables a Data
Architect to create a conceptual data model (CDM) or
Logical Data Model (LDM), transform the model into a
Physical Data Model (PDM). Within the tool, the user can
generate Structured Query Language (SQL) code from the
PDM, and execute the code on a database system to create
a schema of tables and other database objects. Widely used
data modeling tools referred to in this specification are SAP
PowerDesigner (PD), ERWin, IBM InfoSphere Data Archi-
tect (IDA), and Sparx Enterprise Architect (EA).

[0004] Central to MDE, model transformations are an
automated way to generate a target model from a source
model. Most data modeling tools can open a native Pow-
erDesigner or ERWin model file and transform it into their
proprietary format, Unified Modeling [Language (UML), or
Extensible Markup Language (XML) Metadata Interchange
(XMI). Some enterprise modeling tools such as PowerDe-
signer or Sparx EA can transform data models into object
models and vice Versa.

[0005] In information engineering, a domain model is a
conceptual model of the domain that defines both data and
business rules. An industry-standard model is a domain
model for a specific industry or sector. Traditionally, LDM
and UML were the preferred notation for industry models.
With the rise of semantic technologies, Ontology Web
Language (OWL) became the notation of choice for industry
and domain models. For example, the Enterprise Data
Management Council, a global association of financial insti-
tutions, states: The Financial Industry Business Ontology
(FIBO) is the industry standard resource for the definitions
of business concepts in the financial services industry. (see
Enterprise Data Management Council, “A FIBO Primer”).
[0006] For Data Architects to leverage the industry stan-
dard, they need the FIBO or other domain ontologies in their
data modeling tool.

[0007] Academic research describes the mapping of Rela-
tional Database Management Systems (RDBMS) to
Resource Description Framework (RDF) and Ontology Web
Language (OWL) (see Haw, Wilson May, Subramaniam et
al. “Mapping Relational Databases to Ontology Represen-
tation: A Review). However, the mapping is unidirectional,
not to generate a PDM or database schema from the ontol-
ogy.

[0008] Some modeling tools like Sparx EA and IBM IDA
provide an import of RDF/OWL files and subsequent Trans-
formation. (See IBM Support Knowledge center, “Objects,
and properties generated from the OWL-to-logical data
model transformation” and Sparxsystems, “Sparx Enterprise

Jan. 13, 2022

Architect User Guide—ODM Commands”). However, these
data modeling tool imports don’t enable the user to change
the mapping and transformation rules. In particular, the
Transformation does not enable the user to apply a naming
standard to generated entity names. In the past, ontologists
used UML diagrams to visualize their design. However,
RDF/OWL to UML rendition includes anonymous classes
that have no use in a data model.

[0009] Per default, ontology object properties transform
into data model relationships. This Transformation loses
Metadata for object properties with particular design pat-
terns. (see, J. Ziemer “Ontology Object Properties are Data
Model Associative Entities—not Relationships.”)

[0010] Traditional transformations parse ontology files.
They encounter elements of the ontology and create ele-
ments of the data model as they process the source files. The
parsing approach reaches its limits with very large ontolo-
gies like the FIBO.

[0011] The FIBO Data Model made the industry-standard
available as an optimal conceptual data model for most data
modeling tools (see J. Ziemer, “Financial Industry Business
Data Model, (FIB-DM)”). As of this filing, more than seven
hundred people downloaded the Open Source version of the
data model.

SUMMARY

[0012] The Configurable Ontology to Data model Trans-
formation (CODT) transformed the FIBO into FIB-DM.
CODT archives the result with a radically different
approach.

[0013] Rather than parsing source files, CODT uses RDF
Query Language (SPARQL) to extract ontology metadata
from an ontology platform. CODT transforms ontology
metadata into standardized Metadata Sets (MDS), which
provide a holistic view of the ontology rather than individual
elements of the ontology file. CODT works in set operations
rather than procedural algorithms.

[0014] Metadata Sets require the user to configure settings
for transformation rules and overrides.

[0015] A fully configurable transformation depends on
metadata sets.
[0016] This disclosure describes CODT for engineers

skilled in ontologies, data modeling, and programming:
[0017] First, the specification provides an overview of the
method, metadata sets, and system.

[0018] Second, we take the “easy” Transformation of
ontology classes from source to target.

[0019] Third, the description fully discloses metadata sets
and methods and discusses complex transformations of
ontology properties, ontology modules, and annotations.
[0020] Forth, the specification outlines other embodiments
and approaches to implementation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 illustrates the mapping of an example
Ontology Graph to the transformed Conceptual Data Model.
[0022] FIG. 2 is a UML Component diagram of the CODT
and external systems.

[0023] FIG. 3 is a Data Flow Diagram of the Metadata
Sets.
[0024] FIG. 4 is a Business Process Modeling Notation

(BPMN) diagram of the CODT method.

US 2022/0012426 Al

[0025] FIG. Sillustrates a raw ontology extract file in CSV
format.
[0026] FIG. 6 illustrates a sample embodiment of the

Ontology Metadata Set in Microsoft (MS)-Excel

[0027] FIG. 7 illustrates a sample embodiment of the
Ontology Metadata Set Queries and Connections in MS-
Excel

[0028] FIG. 8 illustrates a sample embodiment of the
Ontology Metadata Set in MS Power Query

[0029] FIG. 9 illustrates a sample embodiment of the
Entity-Relationship Metadata Set in MS-Excel

[0030] FIG. 10 illustrates a sample embodiment of the
Entity-Relationship Metadata Set name transformation in
MS-Excel

[0031] FIG. 11 illustrates a sample embodiment of the
Tool-Specific Metadata Set in MS-Excel

[0032] FIG. 12 illustrates the import of sample embodi-
ment tool-specific metadata set into PowerDesigner.
[0033] FIG. 13 is a Data Flow Diagram of the Class
metadata set population.

[0034] FIG. 14 is a Logical Data Model (LDM) diagram
of the Ontology Metadata Sets.

[0035] FIG. 15 is an LDM diagram of the Entity-Rela-
tionship Metadata Sets.

[0036] FIG. 16 is a Data Flow Diagram of the Parent
Relationship metadata set population.

[0037] FIG. 17 is an LDM diagram of the PowerDesigner
Metadata Sets.

[0038] FIG. 18 is a BPMN diagram of the Configuration
subprocess.

[0039] FIG. 19 illustrates a sample embodiment of the
Configuration settings.

[0040] FIG. 20 is a BPMN diagram of the Extract Ontol-
ogy Metadata subprocess.

[0041] FIG. 21 is a BPMN diagram of the Refresh Meta-
data Set subprocess.

[0042] FIG. 22 is a BPMN diagram of the Load subpro-
cess.
[0043] FIG. 23 is a BPMN diagram of the Reverse Trans-

formation process.

DETAILED DESCRIPTION

[0044] FIG. 1 illustrates an example of a source 100
Ontology graph, target PowerDesigner Conceptual Data
Model, and the transformation/mapping from source to
target. The FIBO example is a Bank, which is a Depository
Institution. The Bank provides Bank accounts, which are
identified by a Bank Account Identifier.

[0045] An ontology class 110, “fibo-fbe-fet-fse:Deposito-
rylnstitution,” undergoes a Class to Entity 120 transforma-
tion, and becomes a data model entity 130, Depository
Institution. Note that the CDM diagram uses Logical Names.
The “Camel Case” class Local Name, “Depositorylnstitu-
tion,” converts to “Depository Institution” with a space
inserted.

[0046] The “rdfs:subClassOf” property 140 transforms
into a Depository Institution subtype symbol 150.

[0047] The object property, “fibo-fnd-rel-rel:isProvid-
edBy” 160 transforms into an Associative Entity, “provides”
170. The default configuration setting, recommended for
business domain ontologies, transforms object properties
into Associative Entities or PowerDesigner Associations
rather than Relationships. A stereotype indicates the select
type of data model entity. For example, 170 “<<Associative

Jan. 13, 2022

Entity>> provides.”. Also, note that the example object
property 160 has a passive name, “isProvidedBy,” whereas
the data model entity 170 uses the active form, “provides.”
[0048] The class restriction 180, “fibo-fnd-aap-agt:identi-
fies exactly 1 fibo-fbe-pas-caa:BankAccount” determines
the data model relationship 190 from Associative Entity to
base entity, and its cardinality.

[0049] FIG. 2 is a UML component diagram of the CODT
system 200 and the two external systems. The Ontology
Platform 205 and the Data Modeling Tool 210.

[0050] The first embodiment is the core of the CODT
system 200, comprising of four computer-executable com-
ponents, Configuration 245, Extraction 225, Transformation
235, and Load 230. The components are computer-execut-
able because a user or other components can launch com-
puter instructions.

[0051] The CODT Working Product or prototype imple-
ments the first embodiment as a Microsoft Excel Application
on Windows 10. The reference hard and software environ-
ment is Windows 10 PC with at least one processor, 32 GB
Ram, and at least one fast hard drive or other non-transitory
storage medium, MS-Excel 2019, with integrated MS-Pow-
erQuery.

[0052] The Excel Application is a possible implementa-
tion but by no means the only or preferred embodiment.
However, the best way to encode CODT is to build the Excel
Application first, and then migrate to other embodiments as
needed.

[0053] Ontology Platform 205 for this document means an
Ontology Editor or Development Platform, or an RDF
Database, also known as an RDF or Triple Store. The
Ontology Platform has a SPARQL Interface 215 that can
process queries and return result sets. In the first embodi-
ment, the SPARQL Interface is part of the User Interface. In
other words, the user executes queries on the platform and
saves the result sets as Comma-Separated Value (CSV) files.
Other embodiments may access the Ontology Platform
executing SPARQL metadata queries programmatically via
its Application Programming Interface (API).

[0054] The Data Modelling Tool 210 must have an Import
Interface 220. For example, PowerDesigner has an import
for MS-Excel workbooks, Sparx EA has import functional-
ity for CSV files. In the first embodiment, both interfaces for
the Ontology Platform and Data Modeling Tool are file-
based. Other Data Modeling Tools without model metadata
import may provide an API to create model elements pro-
grammatically.

[0055] The CODT System comprises of six components,
Extraction 225, Transformation 235, Load 230, Configura-
tion 245, and the optional User Interface 260 and Analytics
255. In the first embodiment, these components are Excel
Workbooks. The Extraction Component 225 converts ontol-
ogy metadata into Ontology Metadata Sets, validating,
cleaning, and normalizing the data. The Ontology Metadata
Sets are Excel Sheets in the workbook.

[0056] The Transformation Component 235 aggregates
the Extraction 225, (as the “diamond” connector shape 240
indicates) and Load 230 components. In other words, LLoad
and Extraction extend the Transformation component. The
Transformation Component generates generic Entity-Rela-
tionship (E/R) Metadata Sets from the Ontology Metadata
Sets or the Extraction component.

[0057] The Load Component 230 accesses the E/R Meta-
data Sets and creates Data Modeling Tool-Specific Metadata

US 2022/0012426 Al

Sets. Tool-specific means that formats and model element
names are native as required in the Data Modelling tool
import specifications. The Data Modeling tool can import
these Metadata Sets, the Excel, or CSV files in the first
embodiment without further modification.

[0058] The Transformation Component 235 uses settings
defined in Configuration Component 245. A connector 250
with the “arrow” end means dependency.

[0059] Configuration Component 245 contains the con-
figuration settings, a list of tagged values. In the Excel
Implementation, this is a sheet of section, parameter, and
value. For example, the “Environment” section contains the
CODT home directory; The Transformation Section defines
the naming rules for the data model elements. A user can
configure settings by changing the values.

[0060] The User Interface 260 provides a controlled envi-
ronment for the user to preview and change configuration
settings and values in the metadata sets. For example, a
wizard may guide less experienced users through configu-
ration settings and launching the ontology to data model
transformation.

[0061] The Analytics 255 component provides validation
of Metadata Sets and reports on the structure of the source
ontology. For example, per the default configuration setting,
entity names must be unique. The Analytics Component
highlights duplicates names so that the user may manually
override names, or specify a transformation rule to make the
names unique. The ontology annotation report is an example
of an analytical query. The analytical query results comprise
of annotation properties and their occurrence. The report
may present query results to a user, assists the user in
deciding which annotation properties to transform in the
data model extended properties.

[0062] Analytics and User Interface components are
optional. Experienced CODT users may prefer to work on
the workbooks directly.

[0063] All CODT components are computer-executable.
In the first embodiment, executable code consists of Excel
Formulas, Visual Basic for Applications, and MS-PowerQu-
ery “M” language code.

[0064] FIG. 3 is a Data Flow Diagram (in Gane/Sarson
notation) 300 of the Metadata Sets and the external inter-
faces. The diagram illustrates CODT from the perspective of
the non-transitory storage medium.

[0065] Metadata is data that provides information about
other data. A data set is a collection of data records. As
defined herein, a metadata set is a data set for metadata. The
CODT metadata sets are coupled with computer instructions
that cause the population of the metadata sets, with the
non-transitory storage medium storing ontology metadata
sets, entity-relationship, tool-specific metadata sets, and the
code to populate them.

[0066] The Ontology Platform Interface 310 is the same as
in the system component diagram FIG. 2, SPARQL Interface
215.

[0067] The Extraction Process 320 retrieves ontology
metadata and saves it on the non-transitory storage medium
as an Ontology Metadata Set 330. In Gane/Sarson notation,
the “open rectangle” symbolizes a data store.

[0068] A first Transformation Step 340 transforms the
Ontology Metadata Set 330 into an Entity Relationship
Metadata Set 350. A second Transformation Step 360 trans-
forms the Entity-Relationship Metadata Set into a Data
Modeling Tool-Specific Metadata Set 370.

Jan. 13, 2022

[0069] The Load Process 380 takes the Data Modeling
Tool-Specific Metadata Set 370, and imports it via the Data
Modeling Tool Interface 390, creating the target data model.

[0070] In the first embodiment, the non-transitory storage
medium may be a local or network drive; the Ontology
Metadata Sets are MS-Excel workbook sheets stored on the
drive.

[0071] In other embodiments, the non-transitory storage
medium may extend to a relational database, whereby Meta-
data Sets serialize as database tables.

[0072] FIG. 4 is a Business Process Modeling Notation
(BPMN) diagram providing an overview of the CODT
method 400.

[0073] The BPMN Pool is the Transformation Process
405. The BPMN Pool has two Swimlanes, CODT 415, and
the external Tools and Platforms 410. Note that the database
symbols stand for any external non-volatile storage medium
and format, the Source Ontology RDF Store 445 and Data
Model Repository 470 may have an underlying database or
comprise of files.

[0074] The Ontology to Data model Transformation initi-
ates with the Start Event 420. In other words, a user or a
batch process starts the CODT Transformation. The Start
Event 420 invokes the Configure Transformation task 425.
The plus sign, “+” indicates that 425 is a collapsed sub-
process, which means that this specification document has a
figure and description detailing the sub-process. The Con-
figuration is a user task, where the ontologist or data
architect adjusts Configuration settings 430. The Configu-
ration System Component, FIG. 2, 245, implements the
configuration process. The output of the process is the
Configuration settings 430, stored on the non-transitory
storage medium.

[0075] The process sequence flows to Extract Ontology
Metadata task 435, another collapsed sub-process. The pro-
cess reads the Configuration settings 430 to determine the
ontology metadata source. In the first embodiment, configu-
ration settings simply specify the folder on the non-transi-
tory storage medium that contains “raw” (CSV files of)
extracted Ontology Metadata 440. For other embodiments,
the process may connect to the Ontology RDF Store 445, a
SPARQL Endpoint, and execute metadata queries. The pro-
cess validates, cleans, and reformats raw metadata and stores
it in the standardized Ontology Metadata Set 450.

[0076] The sequence flow then invokes the Transform
Metadata 455 task, also a collapsed sub-process. The pro-
cess loads the Ontology Metadata Set 450 and transforms
the ontology metadata into generic entity-relationship meta-
data. Finally, the task creates its output, the Entity/Relation-
ship Metadata Set 460.

[0077] The sequence flows to the [Load into Modeling Tool
task 465. The collapsed sub-process has the Entity/Relation-
ship Metadata Set 460 as its input object. First, the task
converts the generic E/R metadata into tool-specific meta-
data. Modeling tools have different names for data model
elements and their properties. For example, the E/R Meta-
data Set for Subtypes; PowerDesigner calls it Inheritances,
and Sparx EA speaks of Generalizations. In the first embodi-
ment, Load into Modeling Tool 465 simply creates the
Modeling Tool Metadata Sets 475. These are MS-Excel
Workbooks that the user can directly import into PowerDe-
signer. In other embodiments, the task may directly connect
to the API of the Data Modeling Tool or Repository 470 and

US 2022/0012426 Al

create the data model. The Transformation Process 405
finishes with the End Event 480.
[0078] With ontology classes as an example, this section

follows the Transformation from Ontology Platform through
the Metadata Sets, and into the data modeling tool, Pow-
erDesigner.

[0079]
embodiment.

Table 1 shows the Excel Implementation of the first

TABLE 1

Example implementation for the first embodiment

Component Metadata Set Excel Workbook

Extraction Ontology Metadata Ontology MDS .xlsx
Transformation Generic ER Metadata Entity Relationship MDS.xlsx
Load PowerDesigner PowerDesigner MDS.xlsx

Configuration N/A Configuration.xlsx

[0080] For example, Excel Workbook, “Ontology MDS.
xlsx,” implements the Extraction system component, and the
Ontology Metadata Sets are sheet in the Ontology MDS
workbook.

[0081] The user or a batch process executes the following
SPARQL query on the Ontology Platform:

Owl Classes.rq

SELECT ?class ?qname ?namespace ?skos_ definition

WHERE {

?class a owl:Class.
BIND(afn:namespace(?class) AS ?namespace).
FILTER (smfi:isBound(?namespace)).

BIND (smf:gname(?class) AS ?qname).

OPTIONAL { ?class skos:definition ?skos_definition }

}

[0082]
data sets. Configuration settings may modify the query for

CODT has query templates for all Ontology Meta-

the specific ontology editor or RDF-Store, or transformation
settings. In the above example, the default configuration
option is to ignore anonymous classes. As a result, only
named classes are extracted. For this particular ontology
development platform, the query BINDs the Namespace of
the class and FILTERs out classes with an unbound

namespace.

Jan. 13, 2022

[0083] FIG. 5 is a screenshot of the query results in a text
editor, Windows Notepad. The CSV file 500 has headings
510 and data 520. SPARQL queries, rather than parsing
ontology files, are the performant way to extract ontology

metadata for very large ontologies like the FIBO.

[0084] FIG. 6 is an MS-Excel screenshot 600 of the
Ontology Metadata Set 610. The format of the Classes sheet
620 is an MS-Excel table, where the first row contains the

column headings 630, and the following rows are data 640.
[0085] A CODT design principle is that the Metadata Sets

are coupled with machine-readable instructions, executable
by one or more processors, making the Metadata Sets
self-populating. MS-PowerQuery supports this design prin-
ciple; the machine-readable instructions are M-language

code populating the worksheet.
[0086] FIG. 7 shows the Classes sheet 700 with the

activated the Queries & Connections pane 710. The Classes
Sheet 620 has a query Class 720 linked. We can refresh
individual queries and update the metadata in the corre-
sponding sheets, or refresh all 720 metadata sets in the
workbook. As a recommended convention, CODT groups
queries in folders. The Ontology MDS folder 730 has the
queries to populate the “final” metadata sets. Other folders
contain intermediate queries. For example, the Extract_
SPARQL folder, not depicted, groups queries to load the
CSV files.

[0087] The Ontology_MDS sheets constitute the interface
of the Load Component. The Transformation Component,
the Entity-Relationship MDS, only uses interface sheets as
a data source—not intermediate sheets.

[0088]
Editor 800. The editor is a graphical user interface to select

FIG. 8 shows the Class query in the PowerQuery

data sources and specify transformation steps 810.

[0089] The data source 820 for the Class query is another
query, “csvClass,” which loads the raw query results.
[0090] Below is the “M” language source code listing for

the csvClass Power Query:

Let

Source = Csv.Document(File.Contents(CODT_HOME & “\Ontology
Source\qrClasses.txt”),[Delimiter="", Columns=4, Encoding=1252, QuoteStyle=QuoteStyle.None]),

#“Changed Type” = Table. TransformColumnTypes(Source,{{“Column1”, type text}, {“Column2”, type
text}, {“Column3”, type text}, {“Column4”, type text}}),

#“Promoted Headers” = Table.PromoteHeaders(#*“Changed Type”, [PromoteAllScalars=true]),

#“Renamed Columns” = Table.RenameColumns(#“Promoted Headers”,{{*[class]”, “class™}})

#“Renamed Columns”

US 2022/0012426 Al

[0091] An environment variable, CODT_HOME, config-
ured in the configuration settings, specifies the base direc-
tory on the non-transitory storage medium. The M-code
defines the source CSV file, it’s encoding, and the number
of columns. The code applies type conversions, promotes
the first row as column headers, and renames columns.

[0092] The second query populates Class from csvClass:

Jan. 13, 2022

Entity Code. The Entity Name 940 is a string conversion of
the Localname 960, converting the ontology “Camel Case”
naming convention into LDM names (with spaces). Users
may specify other conversion rules in the configuration
settings.

[0098] The M-language code below populates the Entity
Metadata Set. The condensed listing does not show repeat-

Let
Source = csvClass,
#“Sorted Rows” = Table.Sort(Source,{{“class”, Order.Ascending}}),

#“Filtered Rows” = Table.SelectRows(#“Sorted Rows”, each [class] < > “owl:Thing” and [class] < >

“owl:Nothing” and not Text.StartsWith([class], “dct:”)),

#“Removed Duplicates” = Table.Distinct(#“Filtered Rows”, {“class”’})
in

#“Removed Duplicates”

[0093] Configuration settings enable the user to exclude
ontology modules and classes. In this case, the default
excludes the OWL Thing and the Dublin Core Terms (DCT)
upper ontology module.

[0094] A CODT design principle is to leverage fourth-
generation (4GL), declarative languages, to reduce the lines
of code. The preferred embodiments use SPARQL and
Extract, Transform, Load (ETL) languages like “M.”

ing instructions for removing, renaming, and reordering
columns.

[0099]

erations to achieve its results. The first data source is

The example highlights how CODT uses set-op-
“t_Entity_Name”, merged queries “qRestriction” and
“qEquivalent” provide additional data model entity proper-

ties.

let

Source = Excel.CurrentWorkbook(){[Name="tEntity_ Name]}[Content],
#“Merged Queries” = Table.NestedJoin(#“Reordered Columns”, {“Code”}, qRestriction_ Concat,

{“class”}, “qRestriction_ Concat”, JoinKind.LeftOuter),
#“Merged Queries1” = Table.NestedJoin(#“Renamed Columnsl1”, {“Code”}, qEquivalent, {“class”},
“qEquivalent”, JoinKind.LeftOuter),

#Expanded qEquivalent” = Table.Expand TableColumn(#‘Merged Queriesl”, “qEquivalent”,

{“equivalent_ class”}, {“qEquivalent.equivalent_class”}),

in

#Replaced Value”

[0095] CODT does not prescribe the number of interme-
diate Metadata Sets. A team implementing CODT on MS-
Excel may choose to combine the M-language scripts and
hence bypassing the csvClass PowerQuery and sheet. The
recommendation for first-time implementers is to break
down the complexity, liberally using intermediate sheets for
diagnostic. Once the CODT implementation is well under-
stood and tested, developers may combine queries and
reduce the intermediate sheets.

[0096] FIG. 9 is a CODT screenshot 900 of the Entity-
Relationship MDS 910. The Metadata Set and Object names
follow a generic E/R naming standard. The Entity sheet 920
via intermediate sheets has the Ontology MDS Class sheet
as a source. This Metadata Set is the data source for Entity
in the PowerDesigner, Sparx EA, and other tool-specific
Metadata Sets.

[0097] Code 930 is a linear transformation, a copy of the
class name. There are three derived columns, Name 940,
Prefix 950, and Localname 960, the latter break down the

[0100] OWL differentiates between Primitive and Defined
classes. Primitive classes have instances asserted via
SPARQL CONSTRUCT statements, while an inference
engine (a.k.a. Reasoner) infers members of defined classes
that match the “owl:equivalentClass™ restriction.

[0101] A Configuration setting enables the user to specify
how CODT transforms defined classes. The default option is
to transform them into entities with and “<<equivalent>>"
stereotype and to retain the class restriction as an extended
attribute for documentation.

[0102] Likewise, the “qRestriction” sheet is a concatena-
tion of all restrictions on a particular class, retained for data
model documentation.

[0103] A recommended naming convention for interme-
diate tables uses prefixes:

[0104] “t” (table) is a sheet with derived columns.
[0105] “q” (query) is a sheet that does not add derived
values. Query sheets make MS PowerQuery results non-
volatile for diagnostic purposes.

[0106] FIG. 10 is s another screenshot 1000 of the Entity-
Relationship MDS 910, showing the tEntity_Name 1010
tab, the data source for Entity.

US 2022/0012426 Al

[0107] The M-language code below shows how t_Entity_
name populates from the Class Ontology Metadata Set:

Jan. 13, 2022

“let
Source = Ontology_ MDS,
Class__Table = Source{[ltem=""Class”*,Kind="*Table”*]}[Data],

#7“Changed Type”* = Table.TransformColumnTypes(Class__Table,{{“class”*, type text}, {*“qname™™,

type text}, {**“namespace™™, type text}, {**skos__definition™, type text}}),

#“Renamed Columns™ = Table.RenameColumns(#*“Changed Type™,{{ *class™, *Code™},

{skos__definition”*, ”“Comment™*}}), #*Removed Columns™* = Table.RemoveColumns(#*“Renamed
Colurnnsasss,{”ssqnme”ss}),
#>“Reordered Columns™* = Table.ReorderColumns(#*“Removed Columns™*,{**“Code’, ***Comment”™*,

““namespace”*}),

#>Sorted Rows”* = Table.Sort(#*“Reordered Columns™*,{{*Code™, Order.Ascending}})

in
#7“Sorted Rows””

[0108] The column renames change class to code and
skos_definition to comment.

[0109] Data modeling tools have a code and a logical
name for model objects. The default configuration setting is
to use the ontology element’s qualified name, QName, a
unique identifier, as the Code 1020. Most data modeling
tools have a predefined comment, description, or definition
property for model objects. The user can specify a derivation
rule to populate that column.

mation rule. In the example FIBO transformation, the rule is
to append the ontology module code in brackets: Organiza-
tion becomes Organization (fibo) and Organization (sm).
[0115] FIG. 11 is a screenshot 1100 of the PowerDesign-
er_MDS in the CODT Excel implementation.

[0116] The data modeling tool, SAP PowerDesigner, can
directly import this workbook.

[0117] The source code below shows a direct copy from
the Entity_Relationship_ MDS, Entity table, without any
transformations:

Let

Source = Entity_ Relationship_ MDS,

Entity_ Table = Source{[Item="Entity”,Kind="“Table]}[Data],

#“Changed Type” = Table.TransformColumnTypes(Entity_ Table,{{“Code”, type text}, {“Comment”
type text}, {“URI”, type text}, {“Prefix”, type text}, {“Localname”, type text}, {“Name”, type text}})

in
#“Changed Type”

[0110] The default configuration setting is to populate the
Comment 1030 with the “skos:Definition” annotation prop-
erty.

[0111] Code and Comment are “base” columns —they are
direct copies from the Ontology MDS. Prefix 1040, Local-
name 1050, UnCamel 1060, and Name 1070 are derived
values. The Excel implementation derives values with Excel
Formulas. For example, column UnCamel 1060 has a for-
mula 1080 to reformat the Localname, inserting spaces
between modifiers. Likewise, Prefix 1040 and Localname
1050 derive from the Code 1020, the left/right of the
delimiter, to the colon.

[0112] Set operations, in M-language, determine the
records of a Metadata Set and its base columns—Formulas
compute values for derived columns.

[0113] Data Modeling tools with an RDF/OWL import
function use the ontology class Uniform Resource Identifier
(URL) as an Entity name. It should be an enhancement to
convert the URI into a logical data model name as above;
however, there is a catch. In RDF, the ontology module, the
Prefix 1040, is identifying. In other words, duplicate Local-
names 1050 are allowed. Most Data Model Naming Stan-
dards and Data Modeling tools, however, require both the
code and name to be unique across the data model. The
simple string conversion, UnCamel 1060, creates invalid
entity names.

[0114] In CODT, the user must resolve these duplicates,
either through manual overwrites or configuring a transfor-

[0118] While the Entity sheet 1120 is identical to the
generic E/R MDS;, other sheets reflect the particular “dia-
lect” of the data modeling tool. For example, the Inheritance
sheet 1130 is Supertypes in the source Entity-Relationship
MDS.

[0119] Other data modeling tools may require different
formats and object names, for example, Sparx Enterprise
Architect imports CSV files. A Sparx_EA_MDS reflects the
Sparx dialect, and CODT saves the workbook tabs in
delimited text files.

[0120] FIG. 12 is a screenshot of the PowerDesigner 1200
data modeling tool. In the first embodiment, the interface
between CODT and the data modeling tool is file-based,
whereby a user manually loads CODT tool-specific meta-
data sets into the data modeling tool. The Object Browser
1210 has a folder for Excel Imports 1220; each object is a
mapping specification of source PowerDesigner MDS
workbook sheets to data model elements. For example, the
Entities 1230 mapping has the CODT tool-specific metadata
set 1240 as the Imported File. The Mapping Description
1250 shows that the table Entity equals the Entity data model
object, followed by the table column Code equals object
property code. The user may extend the PowerDesigner
metamodel to provide extended properties for annotations
selected in the CODT configuration. For example, the Map-
ping Description 1250, shows column URI equals “Local
Extensions.URI”, a PowerDesigner Extended Attribute.
[0121] The best way of implementation is to follow the
object names of the target data modeling tool, the dialect
when designing a CODT tool-specific metadata set.

US 2022/0012426 Al

[0122] FIG. 13 is a data flow diagram to recap the Meta-
data Set transformation 1300 from an ontology to a data
model. The horizontal lines delineate Ontology 1305,
Entity-Relationship 1310, and Tool-Specific Metadata Sets
1315. This logical view of data sets and code on the
non-transitory storage device is independent of the particular
implementation. To emphasize the self-populating nature of
the metadata sets, we start with the outcome; the tool-
specific Entity Metadata Set 1320. A like-named process
1325 populates the data set from the E/R Metadata Set 1330.
The process to populate the E/R Entity Metadata Set 1335 is
a merge of three intermediate metadata sets: tEntity_Name
1340, gqRestriction_Concat 1345, and qEquivalent 1350. The
metadata sets populate from three Ontology Metadata Sets,
Class 1355, Class_Restriction_Concat 1360, and Equivalent
1365.

[0123] The next section of this specification examines the
Metadata Sets in detail. For some metadata sets, the descrip-
tion includes a table listing the columns and the population
SPARQL query, to introduce new transformation concepts or
techniques.

[0124] FIG. 14 is an entity-relationship diagram, a logical
data model of the Ontology Metadata Sets 1400. The dia-
gram depicts metadata sets as entities, and the relationships
specify data dependencies between the metadata sets. Note
that the Excel naming convention for sheets is plural, but the
diagram uses singular, the logical data model naming con-
vention.

[0125] The Ontology Metadata Sets are not a normalized
metamodel for RDF/OWL. They are a staging area as in
Extract, Transform Load (ETL) data warehousing architec-
ture. The example diagrams, tables, and queries describe the
working product transforming domain ontologies. Develop-
ers with different tools or source ontologies may choose a
different layout of the metadata sets.

[0126] The MS-Excel implementation validates the data
dependencies with consistency checks. For example, the
Object Property Domain 4010 metadata set must have a
domain that is identifying a record in Class 4015. For
embodiments, hold the metadata sets as database tables on
the non-transitory storage medium, the logical data model is
the blueprint for the physical model and schema. For
embodiments that use an object-oriented programming lan-
guage rather than Excel to implement CODT, developers can
transform the entity-relationship model into a UML Class
Model.

Jan. 13, 2022

model. The Excel implementation does not populate a
workbook sheet for Ontology Element —only for its sub-

types.

[0130] The Class 1420 metadata set contains all classes of
the ontologies.
[0131] Table 2 list the column Name and sample record.

The Key column in Table 2 indicates that the values in this
column are Primary Key (PK) or Alternate Key (AK).

TABLE 2

Classes Metadata Set

Key Name Sample record

PK class fibo-be-corp-corp:Board Agreement
AK qname fibo-be-corp-corp:Board Agreement
AK2 namespace

https://spec.edmeouncil.org/fibo/ontology/
BE/Corporations/Corporations/

a formal, legally binding agreement between
members of the Board of Directors of the
organization

skos__definition

[0132] The Class can be a Superclass 1435, Equivalent
Class 1440, or both, as the inclusive subtype symbol 1445
indicates.

[0133] Table 3 shoes the Equivalent MDS comprising of
the class and OWL equivalent expression.

TABLE 3

Equivalent Metadata Set

Key Name Sample record

PK class
equivalent_ class

fibo-be-le-lei: LEIRegisteredEntity
lee-1r:isIdentified By some fibo-be-
le-lei:LegalEntityldentifier

equivalent_type Restriction

[0134] The equivalent_type indicates whether the equiva-
lent is a class restrictions or an alias (a single class).

[0135] The SPARQL query populates the metadata set
joining the owl:equivalentClass property.

SELECT ?class ?equivalent_ class ?equivalent_ type

WHERE {

?class a owl:Class .
BIND(afn:namespace(?class) AS namespace) .

FILTER (smfiisBound(?namespace)) .

2class owl:equivalentClass ?equivalent_ class
BIND(afn:namespace(?equivalent_ class) AS ?equiv__ns) .

BIND ((IF(smf:isBound(?equiv__ns), “Class”, “Restriction”)) AS ?equivalent_ type)

Superclass 1435 only has two columns, the class and an indicator for exclusiveness.

[0127] The Ontology (module) 1405 comprises of code,
Prefix, Namespace, and annotation properties. For this
specification, the Ontology module means an individual
graph or file (owl:Ontology). Many modules comprise an
ontology like the FIBO.

[0128] The Ontology Element 1410 is the supertype 1415
for Class 1420, Data Property 1425, and Object Property
1430.

[0129] The dotted line around the Ontology Element 1410
indicates a logical-only entity or abstract class in an object

[0136] The SPARQL query selects classes that have sub-
classes via the RDF Schema (RDFS) rdfs:subClassOf prop-

erty.

SELECT DISTINCT ?parent ?is_ exclusive

WHERE {
Iparent a owl:Class .
BIND(afn:namespace(?parent) AS ?namespace) .
FILTER (smfi:isBound(?namespace)) .

US 2022/0012426 Al

Jan. 13, 2022

-continued TABLE 4-continued
2class] rdfs:subClassOf ?parent . Data Property Metadata Set
OPTIONAL {
2classl owl:disjointWith ?class2 .
2class2 rdfs:subClassOf ?parent . Key = Name Sample record
BIND(smf:isBound(?class2) AS ?is__exclusive)
AK2 https://spec.edmcouncil.org/fibo/ontology/BE/
}
1 LegalEntities/LEIEntities/
skos__definition the percentage ownership interest in the owned
. C . ti d b i tity, if kn
[0137] The query examines owl:disjointWith property to e dl_tz O,Wnel Y owming entity, it known
set the is_exclusive indicator. OWL semantics define dis- range Ei 'bmlméll o
jointness as a relationship between two subclasses, whereas parent_property fibo-be-le-lei:isQuantifiedBy
the entity-relationship model exclusive/inclusive applies for
all subtypes.
[0138] The Subclass 1450 metadata set has two columns, [0140] Data model attributes do not support the RDFS
superclass, and subclass.) semantic of sub-properties. Hence the value in parent_
[0139] The Data Property 1425 metadata set comprises of property is a simple concatenation of parent properties
columns shown in Table 4. retained for data model documentation. The range column
refers to the Data Property Range 1455 metadata set, which
TABLE 4 has a distinct list of XML Schema Definition (XSD) data-
es used in the ontology.
Data Property Metadata Set p gy
[0141] Data Property Domain 1460 associates a Data
Key Name Sample record Property 1425 with a Class 1420.
PK data_property fibo-be-le-lei:hasOwnershipPercentage [0142] Data Property Restriction 1465 is another way in
AK - qname fibo-be-le-leithasOwnershipPercentage OWL to associate a Class with Data Properties.
namespace
[0143] Table 5 shows the columns of the metadata set.
TABLE 5
Data Property Restriction Metadata Set
Key Name Sample record
PK, AK class fibo-fbe-fet-breg:StandardIndustrialClassificationCode
PK property fibo-fnd-rel-rel:hasTag
AK restr fibo-fnd-rel-rel:hasTag exactly 1 xsd:string

some__values
all_ values

card

min__card
max__card
has_ value

qual_ card

min__qual__card
max_ qual_ card

data_ range
minimum__cardinality

xsd:string
1

[0144] Columns class, property, and restr uniquely iden-
tity a record. The restriction (restr) is a string of the class
restriction (owl:Restriction). The remaining columns
decompose the class restriction. The Entity-Relationship
MDS uses this information to determine mandatory attri-
butes, where possible.

[0145] Note: RDF/OWL is “Open World”—data proper-
ties are multi-valued unless constrained. The above
example, Standard Industry Classification Code, has a quali-
fied cardinality (qual_card) of 1. For example, there must be
only one code, “3572” for Computer Storage Devices.
However, not all data properties are constrained. The default
configuration setting transforms all data properties into data
model attributes on an entity. The default transformation
does not create new entities for unconstrained data proper-
ties.
[0146]

umns.

The SPARQL query selects the metadata set col-

SELECT ?class ?property ?restr ?some_values ?all_values ?card ?min_card ?max_card ?has_value
2qual_card ?min_qual_card ?max_qual_card ?data_range

US 2022/0012426 Al

-continued

Jan. 13, 2022

WHERE {
7class a owl:Class .
BIND(afn:namespace(?class) AS ?class_namespace) .
FILTER (smfiisBound(?class_namespace)) .
?class rdfs:subClassOf Trestr .
Irestr a owl:Restriction .
2restr owl:onProperty ?property.
?property a owl:DatatypeProperty
OPTIONAL {?restr owl:onDataRange ?data_range }
OPTIONAL {?restr owl:someValuesFrom ?some_values }
OPTIONAL {?restr owl:allValuesFrom ?all_values }
OPTIONAL {?restr owl:cardinality ?card }
OPTIONAL {?restr owl:minCardinality ?min_card }
OPTIONAL {?restr owl:maxCardinality ?max_card }
OPTIONAL {?restr owl:hasValue ?has_value}
OPTIONAL {?restr owl:maxQualifiedCardinality ?max_qual_card }
OPTIONAL {?restr owl:minQualifiedCardinality ?min_qual_card }
OPTIONAL {?restr owl:qualifiedCardinality ?qual_card }

}
[0147] The “OPTIONAL” keyword leaves the variable [0151] Table 6 defines the Object Property Domain MDS
unbound, but returns a record if the property restriction is with the expected columns object_property and domain
not present. class.
[0148] Object Property 1430 is the essential Ontology TABLE 6
Element, besides the Class. Table 5 shows the columns of Object Property Domain Metadata Set
the metadata set.
Key Name Sample record
TABLE 5
PK, AK object_property fibo-fbe-fet-ra:registers
Object Property Metadata Set PK domain_expression ~ fibo-fbc-fet-ra:Registration Authority
Key Name Sample record or fibo-fbe-fet-ra:Registrar
AK domain_class fibo-fbe-fet-ra:Registrar
PK object_property lee-1r:identifies
AK Qname lee-1r:identifies
AK2 - namespace [0152] RDF/OWL allows more than one value specified

skos_definition https://www.omg.org/spec/LCC/Languages/
LanguageRepresentation/recognizes or
establishes within some context

FALSE

FALSE

functional
inverse_functional

[0149] Functional and inverse_functional are indicators
for the OWL properties. The SPARQL query selects the
columns and binds the OPTIONAL triplets to the respective
variables.

for the domain. In the above example, a Registrar or
Registration Authority registers something. The ontology
file, in Turtle notation, defines the object property as:

fibo-fbe-fet-ra:registers
rdfitype owl:ObjectProperty ;
rdfs:comment “QName: fibo-fbe-fet-ra:registers” ;
rdfs:domain [

SELECT ?object_property ?qname ?namespace ?skos_definition ?functional ?inverse_functional

WHERE {
2object_property a owl:ObjectProperty .
BIND(afn:namespace(?object_property) AS ?namespace) .
BIND (smf:qname(?object_property) AS ?qname) .
OPTIONAL {?object_property skos:definition ?skos_definition } .
OPTIONAL { ?object_property a owl:FunctionalProperty
BIND (“TRUE” AS ?functional)

OPTIONAL { ?object_property a owl:InverseFunctionalProperty
BIND (“TRUE” AS ?inverse_functional)
¥

ORDER BY ASC((?qname))

[0150]
Object Property into an Associate Entity. The three Ontology
MDS, Object Property Domain 1470, ObjectProperty Range
1475, and Object Property Restriction 1480 are linking
Class 1420 to Object Property 1430.

In the default configuration, CODT transforms an

-continued

rdfitype owl:Class ;

owl:unionOf (

US 2022/0012426 Al

-continued

fibo-fbe-fet-ra:Registration Authority
fibo-fbe-fet-ra:Registrar
)

I3
rdfs:isDefinedBy fibo-fbe-fet-ra: ;
rdfs:label “registers” ;
owl:inverseOf fibo-fbe-fet-ra:isRegisteredBy ;
skos:definition “records something in a registry or archive” ;

[0153] Hence, both object_property and domain_class
constitute a unique key of the metadata set. The domain_
expression is the full text of the domain, retained for
documentation.

[0154] The SPARQL code populates the metadata set:

10

Jan. 13, 2022

SELECT ?object_property ?domain_expression ?domain_class
WHERE {

2object_property a owl:ObjectProperty .

2object_property rdfs:domain ?domain_expression

OPTIONAL {?object_property rdfs:domain/(owl:unionOf/rdf:rest™/rdf:first)* ?domain_class .

FILTER (isURI(?domain class)) }

[0155] The expression in the OPTIONAL clause decom-

poses the owl:unionOf into multiple records.

[0156] The example illustrates why the preferred embodi-
ments use SPARQL rather than parsing textfiles to extract
ontology metadata. A few lines of 4GL code populate the
data set.

[0157] Object Property Range 1475 follows the same
MDS structure and SPARQL query.

[0158] Object Property Restriction 1480 links object prop-
erties to classes with cardinalities.

[0159] Table 7 shows a similar structure to the Data
Property Restriction metadata set.

TABLE 7

Object Property Restriction Metadata Set

Key Name Sample record
PK, AK class fibo-fnd-pas-pas:CustomerIdentifier
PK restr lee-1r:identifies exactly 1

fibo-fnd-pas-pas:Customer

TABLE 7-continued

Object Property Restriction Metadata Set

Key Name Sample record

AK object_property lee-1r:identifies
some_values

all_values

card

min_card

max_card

has_value

has_value_class

max_qual_card

max_qual_class

min_qual_card

min_qual_class

qual_card 1

qual_class fibo-fnd-pas-pas:Customer

[0160] The sample record states that a Customer Identifier
identifies exactly one Customer. Columns class and restr
constitute a unique key on the data set, as well as class and
object_property.
[0161] The SPARQL query is similar to the object prop-
erty restriction:

SELECT ?class ?restr ?0bj_prop ?some_values ?all_values ?card ?min_card ?max_card ?has_value
%has_value_class ?max_qual_card ?max_qual_class ?min_qual_card ?min_qual_class ?qual_card

2qual_class
WHERE {
2class a owl:Class.

BIND(afn:namespace(?class) AS ?class_namespace).

FILTER (smfiisBound(?class_namespace)).
2class rdfs:subClassOf ?restr.

2restr a owl:Restriction .

2restr owl:onProperty ?0bj_prop.
20bj_prop a owl:ObjectProperty

OPTIONAL {?restr owl:someValuesFrom/(owl:unionOf/rdf:rest*/rdfifirst)* ?some_values

BIND(afn:namespace(?some_values) AS ?some_values_ns)

FILTER (smfiisBound(?some_values_ns))

US 2022/0012426 Al

-continued

Jan. 13, 2022

OPTIONAL {?restr owl:allValuesFrom/(owl:unionOf/rdf:rest*/rdf: first)* ?all_values

BIND(afn:namespace(?all_values) AS ?all_values_ns)
FILTER (smfiisBound(?all_values_ns))

OPTIONAL {?restr owl:cardinality ?card }
OPTIONAL {?restr owl:minCardinality ?min_card }
OPTIONAL {?restr owl:maxCardinality ?max_card }
OPTIONAL {?restr owl:hasValue ?has_value .
“has_value a ?had_value_class }
OPTIONAL {?restr owl:maxQualifiedCardinality ?max_qual_card .

2restr owl:onClass/(owl:unionOf/rdfirest*/rdf:first)* ?max_qual_class.
BIND(afn:namespace(?max_qual_class) AS ?max_qual_class_ns)

FILTER (smfiisBound(?max_qual_class_ns))

OPTIONAL {?restr owl:minQualifiedCardinality ?min_qual_card .

2restr owl:onClass/(owl:unionOf/rdfirest®/rdf:first)* ?min_qual_class .
BIND(afn:namespace(?min_qual_class) AS ?min_qual_class_ns)

FILTER (smfiisBound(?min_qual_class_ns))

OPTIONAL {?restr owl:qualifiedCardinality ?qual_card .
2restr owl:onClass/(owl:unionOf/rdfirest*/rdfifirst)* ?qual_class .
BIND(afn:namespace(?qual_class) AS ?qual_class_ns)
FILTER (smfiisBound(?qual_class_ns))

[0162] Again the OPTIONAL keyword decomposes the
class restriction into separate columns and the owl:unionOf
expression returns individual records for owl:onClass.

[0163] RDFS enables the ontologist to define property
hierarchies. The Object Sub Property 1485 metadata set has
two columns, referencing two object properties. Sub_prop-
erty and parent_property. The SPARQL query selects object
properties matching rdfs:subPropertyOf.

[0164] Properties have a direction, from domain to range.
As beforementioned, the Customer Identifier identifies a
Customer. The inverse property, owl:inverseOf defines the
relation in the opposite direction: Customer is identified by
a Customer Identifier. The construct enables the ontologist to
define aliases and to specify restrictions on both classes.

[0165] An ontology to data model transformation must
merge inverse object properties into a single associative
entity.

[0166] The Inverse 1490 metadata set has two key attri-
butes referring to the Object Property 1425. The SPARQL
query selects object properties matching owl:inverseOf.

[0167] Several upper ontologies, like the Simple Knowl-
edge Organization System (SKOS) and Semantic Metadata
(SM), define standard annotation properties to document
ontologies.

[0168] Annotation Concat 1495 associates an Ontology
Element 1410 with specified Annotation Properties 1498.
Table 8 specifies the metadata set:

TABLE 8

Annotation Concat Metadata Set

Key Name Sample record

PK annotation_property sm:copyright
object_type owl:Ontology

PK object_code fibo-be-corp-corp

annotation_concat Copyright (¢) 2013-2020 EDM
Council, Inc.
Copyright (¢) 2013-2020

Object Management Group, Inc.

[0169] The sample record shows the copyright annotation
property on the FIBO Business Entities Corporations ontol-
ogy module (fibo-be-corp-corp).

[0170] The annotation value lists the EDM Council and
the Object Management Group as copyright holders. The
object_type specifies whether the object_code is an ontology
module, class, data, or object property.

The SPARQL query selects the four columns of the metadata set.

SELECT DISTINCT ?annotation_property ?object_type ?object ?annotation

WHERE {

2annotation_property a owl:Annotation Property .

2object ?annotation_property ?annotation .

2object a 2object_type .

FILTER (?object_type IN(owl:Class, owl:Ontology, owl:DatatypeProperty, owl:ObjectProperty))

US 2022/0012426 Al

[0171] The caveat is that annotation properties are multi-
valued. Hence, the above query returns two rows, EDM
Council and Object Management Group. Annotation prop-
erties transform to PowerDesigner Extended Attributes (a.k.
a. Tagged Values or User Defined Properties in other mod-
eling tools), which are single-valued. Therefore, the
M-language code below groups and concatenates the anno-
tations:

Jan. 13, 2022

TABLE 9-continued

Supertype E/R Metadata Set

Key Name Sample record

fibo-fbe-fet-
fse:DepositoryInstitution_ST

AK1 Subtype_Code

Let

Source = Excel.CurrentWorkbook(){[Name="csvAnnotation”] }[Content],

#“Removed Columns” = Table.RemoveColumns(Source,{“object}),

#“Reordered Columns” = Table.ReorderColumns(#“Removed Columns”,{*“annotation_property”,

“object_type”, “object_code”, “annotation”}),

#“Grouped Rows” = Table.Group(#“Reordered Columns”, {“annotation_property”, “object_type”,
“object_code”}, {{“Group_Annotation”, each _, type table [annotation_property=text, object_type=text,

object_code=text, annotation=text]}}),

#“Added Custom” = Table.AddColumn(#“Grouped Rows”, “List_Annotation”, each

[Group_Annotation][annotation]),

#“Extracted Values” = Table.TransformColumns(#“Added Custom”, {“List_Annotation”, each

Text.Combine(List. Transform(_, Text.From), “#(cr)#(If)”), type text}),

#“Renamed Columns” = Table.RenameColumns(#“Extracted Values”,{{*List_Annotation”,

“annotation_concat”}}),

#“Removed Columns1” = Table.RemoveColumns(#“Renamed Columns”,{“Group_Annotation”}),
#“Filtered Rows” = Table.SelectRows(#“Removed Columns1”, each ([object_code] < >

“dcterms:LicenseDocument”))
in
#“Filtered Rows”

[0172] The Table.Group instruction retains annotation_
property, object_type, and object_code, and consolidates
annotation. The Text.Combine instruction concatenates the
list strings, inserting a line feed.

[0173] Finally, Annotation Property 1470 is a reference
metadata set comprising of annotation code, (QName,
Namespace, and skos_definition columns.

[0174] FIG. 15 is a logical data model of the Entity-
Relationship Metadata Sets 1500. Just like the Ontology
MDS diagram, this LDM is a blueprint for embodiments that
implement on relational databases or use object-orientated
programming languages. For the Excel implementation, the
data dependencies, visualized in relationship lines, guide
orchestration, the order of populations for the data sets. The
design is similar to the Entity-Relationship metamodel but
considers transformation processing. In other words, the E/R
Metadata Sets are appropriately denormalized.

[0175] The Entity MDS 1505 sources from the Class
Ontology MDS, as discussed in the source-to-target
example.

[0176] The Supertype Metadata Set 1510 contains records
for subtype symbols, as in FIG. 1 Depository Institution
subtype symbol 150. Only data modeling tools like Pow-
erDesigner or ERWin that support the subtype symbol
require this metadata set. For other tools like Sparx EA,
there is a different MDS directly linking supertype to sub-
type entities.

[0177] Table 9 lists the keys, column names, and sample
record values:

TABLE 9

Supertype E/R Metadata Set

Key Name Sample record

fibo-fbe-fet-
fse:Depositorylnstitution

PK Entity_Code

TABLE 9-continued

Supertype E/R Metadata Set

Key Name Sample record

AK2 Subtype_Name
Comment

Depository Institution subtype
The subtype symbol for supertype
Depository Institution
Is_Exclisive

[0178] The key on Entity_Code means that there is one
record in the metadata set for every entity that has subtypes.
The subtype [symbol] code, name, and comment derive
from the supertype entity, as per configurable string manipu-
lation. The Supertype MDS populates from an intermediate
MDS, tSupertype, which is an inner join of Ontology
Superclass MDS and the Entity MDS. For all Entities that
are Supertypes, the intermediate table populates with the
Entity_Code, Entity_Name, Is_Exclisive indicator. Three
additional columns Subtype_Code, Subtype Name, and
Comment, derive their values from entity code and name
with formulas:

Subtype_Code=CONCAT([@|Entity_Code]], “_ST”)

[0179] Subtype_Name=CONCAT(|@]|Entity_Namel]],
“Subtype”)

Comment=CONCAT(“The subtype symbol for supertype”,
[@[Entity_Name]])

CONCALT is an Excel string function, and the Entity_Name
is the example is “Depository Institution.”

[0180] Embodiments with other implementations can use
the formulas and M-language as pseudo-code.

[0181] The Subtype 1515 Metadata Set holds the subtypes
for a particular entity. Table 10 shows the metadata set
containing three columns:

US 2022/0012426 Al

TABLE 10

Subtype E/R Metadata Set

Key Name Sample record

PK Supertype_Entity_Code fibo-fbe-fet-
fse:Depositorylnstitution

AK Subtype_Code fibo-fbe-fet-
fse:Depositorylnstitution ST

PK, AK Subtype_Entity_Code fibo-fbe-fet-fse:Bank

[0182] The composed key means that a subtype can have

more than one supertype, a default configuration options for
Conceptual Data Models (CDM) derived from domain
ontologies.

[0183] The Data Item 1520 metadata defines common
attributes in data models.

13

Jan. 13, 2022

Property MDS and intermediate tables to create the Data
Item data set.

[0187] The Entity Attribute 1525 metadata set associates
Data Items 1520 to the Entity 1505.

[0188]
Attribute (code), and the indicator Mandatory. Two ontology

The metadata set has three columns, Entity (code),

design patterns connect the class to a data property, data
property domain, and class restrictions. Hence, the Power-
Query on Entity_Attribute combines two intermediate meta-
data sets, tEntityAttributeFromDomain, and tEntityAttrib-

uteFromRestriction, all three metadata set having the same

[0184] Table 11 shows the Data Itemmetadata set col-
umns: columns:
TABLE 11
Data Item E/R Metadata Set
Key Name Sample record
PK Data_Item_Code fibo-be-le-lei:hasOwnershipPercentage
Name Ownership Percentage
Prefix fibo-be-le-lei
Localname hasOwnershipPercentage
Comment The percentage ownership interest in the owned
entity owned by owning entity, if known
URI https://spec.edmcouncil.org/fibo/ontology/BE/
LegalEntities/LEIEntities/hasOwnershipPercentage
Data_Type Decimal

Parent_Data_Item
Resource_Type

fibo-be-le-lei:isQuantified By
owl:DatatypeProperty

Let

Source = Table.Combine({tEntity AttributeFromDomain, tEntity AttributeFromRestriction}),

#“Grouped Rows” = Table.Group(Source, {“Entity”, “Attribute”}, {{“Count”, each
List.Max([Mandatory]), type number}}),

#“Sorted Rows” = Table.Sort(#“Grouped Rows”,{{“Entity”, Order.Ascending}}),

#“Renamed Columns” = Table.RenameColumns(#*“Sorted Rows”,{{“Count”, “Mandatory”}})

in
#

“Renamed Columns”

[0185]
Property MDS, and the sample, “Ownership Percentage” is

The primary source for Data Item is the Data

the same as in Table 4. The Transformation uses the same
techniques to derive a logical data model Name from the
ontology Localname, and to correct duplicate names, as
describes for Entity and Supertype symbol. The configurable

naming rules eliminate the “has” prefix.

[0186]
able mapping table from ontology XSD to data model

The value in Data_Type is a lookup of a configur-

standard types. M-language instructions merge the Data

[0189] The M-language instruction Table.Combine is
similar to the SQL UNION. The Table.Group instruction
removes duplicate Entity Data Item records, retaining the
Mandatory value of 1. In other words, any mandatory data
property restriction makes the attribute mandatory.

[0190] The Ontology Data_Property_Domain MDS is the
data source for tEntityAttributeFromDomain MDS, and
Ontology MDS Data Property Restriction is the source for
tEntity AttributeFromRestriciton. The Mandatory indicator
is 1 if a restriction specifies a minimum cardinality >0 or
exact cardinality of 1.

[0191] As discussed for the Data Property Restriction
MDS, the default configuration setting transforms all data

US 2022/0012426 Al

properties into data model attributes on an entity. This
setting reflects the design and intention of the FIBO and
most other domain ontologies. Domain ontologies already
encapsulate data properties in classes for various dates,
amounts, names, and codes. Hence there are no intended
multi-valued data properties in the source ontology. Users
can change this setting, and developers can add metadata
sets and transformation rules for wrapper entities.

[0192] The default configuration, recommended for
domain ontologies, transforms object properties into asso-
ciative entities. The Associative Entity 1530 is a specializa-
tion of Entity 1505. Table 12 lists the column using the same
sample, “identifies,” of the ontology MDS.

TABLE 12

Jan. 13, 2022

[0196] The master list, sActivePassive, is a filter for
Associative Entity.

[0197] Associative Entity Supertype 1535 and Associative
Entity Subtype 1540 follow the structure of Entity supertype
and subtype. The transformation technique is also similar
but has one addition: The passive data property may yield
additional subtypes or supertypes. For example, sample
record 3, isSubUnitOf maybe sub-property of isPartOf,
which is the passive or hasPart. The Transformation harvests
this metadata and applies it to the active associative entity,
making fibo-be-le-fbo:hasSubUnit subtype of hasPart.

Associative Entity E/R Metadata Set

Key Name Sample record
PK Code lee-Iriidentifies
AK1 Name identifies
Comment Recognizes or establishes within some context
AK2 URI https://www.omg.org/spec/LCC/Languages/LanguageRepresentation
/identifies
functional FALSE
inverse__functional FALSE
Prefix lee-Ir
Localname identifies
Restriction
Equivalent owl:inverseOf lcc-lr:isldentifiedBy
[0193] Code, Name, Comment, URI, functional, inverse_ [0198]

functional, Prefix, Localname, and Restriction transform
from the ontology and intermediate metadata sets, using the
same techniques described for Entity and Data Property.
[0194] The challenge is in the value of the Equivalent
column: owl:inverseOf Icc-Ir:isldentifiedBy

[0195] The Ontology MDS section of this specification
stipulated that Inverse Object Properties must merge. (see, J.
Ziemer “Ontology ObjectProperties are Data Model Asso-
ciative Entities—not Relationships.” pp 16, 17). We must
not have two relationships in the opposite direction, swap-
ping parent and child entity, between entities. In the example
transformation of FIG. 1, a Bank Account Identifier identi-
fies 180 a Bank Account. The ontology may also state a
Bank Account isldentifiedBy a Bank Account Identifier, but
the data model does not allow this pattern. Following data
model naming standards, CODT eliminates the passive
relation, “isldentifiedBy,” and adds an inverse of the meta-
data to the retained active relation. The user may override
the CODT determination and must configure the setting,
where the Transformation cannot determine the active rela-
tion. The outcome is Table 13, a master list of object
properties that transform into associative entities:

TABLE 13

In the Entity-Relationship MDS, relationships con-
nect base entities derived from ontology classes to associa-
tive entities derived from ontology object properties. Data

model relationships are directional from a “Parent” to a
“Child” entity, with Parent-entity primary key attributes
migrating to the Child-entity. In an ontology, the domain of
the object property indicates the parent, and the range
indicates the child. Likewise. A class with an owl:onroperty
restriction is the parent, optionally the restriction may
specify the child. For inverse object properties merged into
the active associative entity parent and child are reversed. In
the first sample record, the domain of isJusristictionOf

becomes range for hasJurisdiction.

[0199] The Parent Relationship 1545 MDS contains the
data model metadata linking a parent base entity to the
associative entity, for example, Bank Account Identifier to
Band Account.

[0200] Table 14 shows the structure and a sample record.

sActivePassive Metadata Set

Key Name Sample record 1 Sample record 2

Sample record 3

PK Active fibo-be-fet-pub:publishes

Passive fibo-be-fet-pub:hasPublisher

fibo-be-ge-ge:hasJurisdiction
fibo-be-ge-ge:isJurisdictionOf fibo-be-le-fbo:isSubUnitOf

fibo-be-le-fbo:hasSubUnit

US 2022/0012426 Al

TABLE 14

Jan. 13, 2022

Parent Relationship E/R Metadata Set

Key Name Sample record

PK Parent_ Entity_ Code fibo-fbe-fet-rga:RegulatoryAgency

PK Associative_ Entity_ Code fibo-be-ge-ge:hasJurisdiction

AK RLtnp_ Parent_ Code fibo-fbe-fet-rga:RegulatoryAgency__fibo-

be-ge-ge:hasJurisdiction
Rltnp_ Parent_ Name
Parent_ Entity_ Name
Associative_ Entity.Name
Rltnp_ Parent_ Comment

Regulatory Agency
has Jurisdiction

Regulatory Agency - has Jurisdiction

Links the base entity ‘Regulatory Agency’

to the associative entity ‘has Jurisdiction.’

Is_Identifying N
Min_ Cardinality 1
Max__Cardinality 999

[0201] Parent_Entity Code and Associative_Entity_
Code, referring to Entity and Associative Entity MDS,
constitute the primary key. Parent_Entity Name and Asso-
ciative_Entity_Name source from their reference MDS,
Entity, and Associative_Entity. Rltnp_Parent_Code, Rltnp_
Parent_Name, and Rltnp_Parent_Comment derive from
Rltnp_Parent_Name and Associative_Entity Name. The
Is_Identifying indicator, Min and Max_Cardinality, derive
from cardinalities in the class restrictions.

[0202] The Child Relationship 1550 and Dual Relation-
ship 1555 have the same structure as the Parent Relationship
1545. All three MDS have a logical only supertype, Rela-
tionship, not depicted in the diagram and not a physical
MDS. In other words, relationship records in the three MDS
are distinct.

[0203] The complexity of populating the Relationship
MDS arises from different ontology metadata patterns,
domain/range and class restrictions, and harvesting relation-
ship metadata from merger passive inverse object properties.
[0204] FIG. 16 is a data flow diagram 1600 tracing the
Transformation of Parent Relationship 1605 via various
intermediate MDS to source ontology MDS.

[0205] The population process is a Left Outer Join 1610 of
tParentAssotiationAll 1615 all and tDualRelationship 1620.
A dual relationship indicates that the entity is a parent in
some relationship and child in others.

[0206] For example, a director may appoint a manager
who, in turn, appoints team members. The query filters out
relationships that are already in the Dual Relationship set.
[0207] The intermediate MDS tParentAssotiationAll 1615
populates with an Inner Join 1625 of qParentAssociationAll

1630 with reference data from Entity 1320 and Associative
Entity 1635. For all records in qParentAssociationAll 1630,
the M-language query looks up the entity and associative
entity name. The prefix “q” indicates a simple query without
added columns and formulas, whereas the prefix “t” stands
for the table. The intermediate table metadata set tParen-
tAssociation all add columns for Rltnp_Parent_Code,
Rltnp_Parent_Name, and Rltnp_Parent_Comment, and
derives their values from the logical names via string
CONCAT formulas.

[0208] The metadata set populates as a distinct Union
1640 of intermediate MDS with records harvested range,
domain, and class restriction. qParentFomDomainActive
1650 lists parent, restriction, associations, min, and max
cardinality from active association (object properties) and
their domain. The metadata set populates from a Left Outer
Join 1660 of Ontology MDS Object Property Domain 1665
and Object Property 1670, with the already described aAc-
tivePassive 1675 MDS. The query filters out passive object
properties that must not transform into associations. The
gParentFromRangePassive intermediate MDS populates
with a similar join on Object Property, Object Property
Range, and sActivePassive. Finally, qParentAssociationFro-
mActive populates from a join of Object Property and
Object Property Restriction with sActivePassive.

[0209] Following the disclosed techniques and design
patterns, developers can implement metadata sets and que-
ries for Child and Dual Relationships.

[0210] Packages organize entities in a data model. Table
15 shows the Packages metadata set.

TABLE 15

Packages F/R Metadata Set

Key Name Sample record

PK Package_ Code
AK Package_ Name
Package. Comment The package for data model objects derived from the US

fibo-be-ge-usj

US Government Entities And Jurisdictions

Government Entities And Jurisdictions ontology module.
This ontology provides the set of basic federal
government, state, and territory level entities and
jurisdictions for use in other US-specific FIBO

ontologies.

US 2022/0012426 A1 Jan. 13, 2022
16

TABLE 15-continued

Packages F/R Metadata Set

Key Name Sample record

URI https://spec.edmcouncil.org/fibo/ontology/BE/
GovernmentEntities/Nort hAmericanJurisdiction/
USGovernmentEntitiesAndJurisdictions/

Parent_ Code fibo-be-ge
[0211] The metadata set has the Ontology (module) MDS TABLE 16-continued
as the data source. Large ontology schemas like the FIBO
may have over a hundred Ontology modules or files. The Entity Documentation Metadata Set

user and developer can decide on a suitable package hier-
archy, as far as the data modeling tool supports it.

[0212] CODT transforms ontology annotation properties rdfs:isDefinedBy fibo-fnd-law-cor:
into data model documentation. Table 16 shows a subset of rdfs:label law

. . skos:definition a system of rules and guidelines
the Entlty_Documentatlon MDS. which are enforced through social

institutions to govern behavior

Key Name Sample record

skos:editorialNote ~ Any law or body of law, which may
TABLE 16
have force in some context,
Entity Documentation Metadata Set including natlon{ll laws, company
bylaws and the like.
Key Name Sample record
PK Entity_ Code fibo-fnd-law-cor:Law [0213] Ontologists may use a wide variety of annotation
fibo-fnd-utl- Law is a term which does not have a properties. FIBO Classes, for example, have 24 different
aviexplanaforyNote universally accepted definition. annotation properties, some occur only once. The data
Certain laws are made by governments, . .
specifically by their legislatures mod.eler may set up Documentatlor} properties as Extended
although the sense intended here is Attributes, User Defined Properties, or Tagged Values,
broader. The formation of laws depending on the particular data modeling tool, before

themselves may be influenced by a
constitution (written or unwritten)
and the rights encoded therein.

importing. Analytical queries and metadata sets assist the
user by providing a list of annotation properties, and a count

The law shapes politics, economics of occurrences for ontology module, class data, and object
and society in countless ways and property. The user can flag individual annotation properties
serves as a social mediator of or provide a minimum count to include them in the Trans-
relations between people. .

fibo-fnd-utl- http://en.wikipedia.org/wiki/Law formation.]]]

avidefinitionOrigin [0214] Below is an abridged version of the M-language

query to populate the Entity Documentation MDS.

Let

Source = gAnnotationConcat,

#“Filtered Rows” = Table.SelectRows(Source, each ([object_type] = “owl:Class™)),

#“Merged Queries” = Table.NestedJoin(#“Filtered Rows”, {“annotation_ property”, “object_type”},
gAnnotationCount, {“annotation_ property”, “object_type”}, “qAnnotationCount”, JoinKind.FullOuter),

#“Expanded gAnnotationCount” = Table.ExpandTableColumn(#“Merged Queries”,
“gAnnotationCount”, {“annotation__property”, “In__Class__Scope™},
{“qAnnotationCount.annotation_ property”, “qAnnotationCount.In__Class_ Scope”}),

#“Filtered Rows2” = Table.SelectRows(#“Expanded gAnnotationCount”, each
([gAnnotationCount.In__Class_ Scope] = “Y™)),

#“Removed Other Columns” = Table.SelectColumns#“Filtered Rows2”,{“object_code”,
“annotation_property”, “annotation_ concat’}),

#“Merged Queriesl” = Table.NestedJoin(#“Removed Other Columns”, {“object_code”}, Entity,
{“Code”}, “Entity”, JoinKind.LeftOuter),

#“Expanded Entity” = Table.ExpandTableColumn(#“Merged Queries1”, “Entity”, {“Code”, “Name”},
{“Entity.Code”, “Entity.Name™}),

#“Filtered Rows1” = Table.SelectRows(#“Expanded Entity”, each ([Entity.Code] < > null)),

#“Removed Columns” = Table.RemoveColumns(#*Filtered Rows1”,{“Entity.Code”, “Entity.Name”}),

#“Pivoted Column” = Table.Pivot(#“Removed Columns”, List.Distinct(#“Removed
Columns™[annotation__property]), “annotation_ property”, “annotation_ concat™),

#“Replaced Value” = Table.ReplaceValue(#“Pivoted
Column”,null,Replacer.ReplaceValue,{“rdfs:comment”, “rdfs:isDefinedBy”, “rdfs:label”,
“skos:definition”, “fibo-fnd-utl-av:definitionOrigin”, “skos:editorialNote”, “fibo-fnd-utl-av:synonym”,
“fibo-fnd-utl-av:explanatoryNote”, “skos:scopeNote”, “fibo-fnd-utl-av:adaptedFrom”, “skos:example”,
“rdfs:seeAlso”, “fibo-fnd-utl-av:abbreviation”, “fibo-fnd-utl-av:usageNote”, “skos:altLabel”, “skos:note”,
“fibo-fnd-utl-alx:actualExpression™}),

#“Renamed Columns” = Table.RenameColumns(#“Replaced Value”,{{“object_code”, “Entity_ Code”}}),

#“Sorted Rows” = Table.Sort(#“Renamed Columns”,{{“Entity_ Code”, Order.Ascending}})

#“Sorted Rows”

US 2022/0012426 Al

[0215] The query merges the Ontology Annotation MDS
with the configuration table and filters rows in scope
(flagged gAnnotationCount.In_Class_Scope="“Y”"). The
ontology MDS has annotation properties as rows, but the
subsequent import into the data modeling tool needs them as
columns. The Table.Pivot instruction accomplishes the
transposition.

[0216] Annotation concludes the description of Entity-
Relationship metadata sets and their Transformation from
ontology MDS. Developers can use the disclosed MDS
structures, and M_language code to program other embodi-
ments and ontology design patterns.

[0217] The next section describes the data modeling tool-
specific modeling tool-specific metadata sets, taking Pow-
erDesigner as an example.

[0218] FIG. 17 is a logical model diagram of the Pow-
erDesigner MDS 1700.

[0219] The PD Entity 1705 MDS is identical to the E/R
MDS, and the population is a direct copy of records. The
[0220] Data Item 1710 is also identical and a direct
transformation of the E/R MDS. The only Transformation is
to change the generic Data_Type “Variable characters™ to
PowerDesigner “Variable Characters (255).

[0221] The Entity Attribute 1715 has the same structure as
its E/R counterpart. The only Transformation is to replace
values in the Mandatory indicator from “0/1” to “Y/N.” Note
that the PowerDesigner Conceptual Data Model is one of the
few models and tools to support Data Item as a model object.
For other models and tools, Entity Attribute 1715 populates
from a join of E/R MDS Data Item and Entity Attribute.
[0222] The PD Associative Entity 1720 MDS adds a
column Stereotype with a constant value “Associative
Entity” to the E/R Associate Entity MDS.

[0223] The Inheritance 1725 populates directly from the
Supertype MDS. Minimal transformation rename columns
to match PowerDesigner object names and replace Mutual-
ly_Exclusive values “true” with “Y.” The Inheritance Link
1730 populates directly from the SubType MDS. The Trans-
formation removes the Supertype_Entity_Code column and
renames columns to fit the PowerDesigner object names.
Note that some data modeling tools like Sparx EA do not
support a supertype symbol. The Sparx Generalization is a
direct relationship between two entities. A Generalization
MDS populates from a join of Supertype and Subtype MDS.
[0224] Associative Entity (AE) Inheritance 1735 and AE
Inheritance Link 1740 have the same structure as the base
entity inheritance MDS and populate directly from their E/R
counterparts.

[0225] Relationship Parent 1745, Relationship Child
1750, and Relationship Dual 1755 are direct copies of their
E/R counterparts.

[0226] Packages, not depicted, is a direct copy of the E/R
metadata set with two added columns, Resource_Name
defaulting to Package Code and Resource_Type defaulting
to “owl:Ontology.” The columns provide a lineage to the
ontology values if data modelers change the package code.
[0227] Annotation metadata sets, not depicted, are direct
copies of their E/R counterparts.

[0228] PowerDesigner can directly import the MS-Excel
metadata sets. The granular structure, with several imports
into the same PowerDesigner data model object, facilitates
diagnostics, but Developer and Data Architect may choose
to consolidate import spreadsheets.

Jan. 13, 2022

[0229] The next section describes the CODT method in
detail. FIG. 18 shows Configuration 1800 task.

[0230] The diagram expands Configuration subprocess
425 of the FIG. 4 method overview.

[0231] Configuration in this specification means both, a
user changing settings, User swimlane 1805 and the system,
swimlane CODT Configuration 1810 of metadata sets based
on the user settings.

[0232] The Start Event 1815 occurs when the parent
process invokes Configuration, typically when the CODT
application launches. The gateway 1820 branches depending
on the CODT execution mode. Automatic mode means to
run a transformation without launching the user interface. In
the default, non-automatic mode, the user can review and
change configuration settings 1825 and save a new configu-
ration 1830 on the non-transitory storage medium.

[0233] The settings gateway 1835 checks if the Configu-
ration has a timestamp newer than the last applied settings.
If not, then the subprocess terminates in the End Event 1840.
[0234] Transformation settings may impact the Metadata
Sets, their population, or column transformations. For MS-
Excel embodiments, the best way of implementation is to
configure, in other words, to overwrite workbook sheets,
M-language queries, and formulas. Other embodiments,
residing on an ETL platform or using object languages, may
examine configuration parameters at runtime.

[0235] Ifthe Configuration is new, then CODT Configures
the Extraction 1845. A change parameter may specify a
different file-folder for ontology metadata or different con-
nection to an RDF-Store. Some configuration settings may
require to modify SPARQL Queries 1850. For example, the
user may configure to exclude particular ontology modules.
[0236] Process control then flows to Configure Transfor-
mation task 1855 The object property transformation is an
example of a configuration setting that impacts metadata
sets. The user may configure settings to transform object
properties into relationships, associations, or the default,
associative entities, each requiring different metadata sets. In
Excel embodiments, the task copies the required sheet from
templates into the Entity-Relationship MDS workbook. The
task may modify and replace the M-language query if the
configuration setting requires it. Finally, the task overwrites
formulas as needed. The user, for example, may specify
different naming standards to convert ontology class names
into entity names. In MS-Excel, examining configuration
parameters at runtime leads to overly complicated formulas
and query code.

[0237] Finally, Configure Load 1860 overwrites the Tool-
Specific MDS if the target Data Modeling tool has changed.
Other configuration parameters may specify different con-
nection parameters for the tool or a different target model.
The task terminates in the End Event 1840 and with it
Configure Transformation 1800 subprocess.

[0238] FIG. 19 is a CODT screenshot with the sheet for
Configuration 1900. In the working product, the Configu-
ration is a simple table with Parameter 1910 and Value 1920
columns. A power-user directly enters parameter values;
developers may add parameters as needed. Section for
Source Ontology 1930 and Target Model 1940 set file
directories or connection strings to the external platforms.

[0239] Transformation Rules 1950 specify the scope of
elements of the ontology and their designated data model
object. The user can specify Object Naming Rules 1960 to
support naming standards.

US 2022/0012426 Al

[0240] FIG. 20 is a BPMN diagram expanding the Extract
Ontology Metadata 2000 subprocess. The Extraction Com-
ponent 225 of FIG. 2 is the part of the system implementing
the subprocess, and the description non-transitory storage
medium, Ontology Metadata Set 330 of FIG. 3 describes the
data structure and its population code in detail.

[0241] Two swimlanes, CODT Extraction 2005 and
Ontology Platform 2010, represent internal and external
tasks, stores, and data objects.

[0242] The Start Event 2015 invokes the process and starts
the Examine Interface 2020. The task reviews the Source
Ontology configuration setting and validates the parameters.
[0243] The Manual 2025 gateway branches to manual user
Run queries 2030 or automated CODT Execute queries
2035. Both tasks query ontology metadata with SPARQL
Queries 1850 of the previous Configuration subprocess on
the Source Ontology 445, and produce the output object
from the source ontology datastore is the raw Ontology
metadata 2045.

[0244] The Complete 2050 gateway merges the flows and
invokes the Refresh Metadata Sets 2055 subprocess. The
refresh subprocess updates all Ontology Metadata Sets,
producing updated Ontology Metadata Sets 2060 and ter-
minates Extract Ontology Metadata with the End Event
2065.

[0245] FIG. 21 is a BPMN diagram of the Refresh Meta-
data Sets subprocess 2100, which is internal and has only
one swimlane 2105. All components, Extract, Transform,
and Load call this subprocess to update an Ontology, Entity-
Relationship, or Tool-Specific Metadata Set, triggering the
Start Event 2110 for a particular set. In MS-Excel embodi-
ments PowerQuery automatically refreshes individual or all
queries, taking care of dependencies, as depicted in FIG. 7
Refresh All 720. For other embodiments, the subprocess
shows how to encode the recursion of dependent metadata
set, as in FIG. 13 populating the Entity MDS 1320 and its
dependent intermediate metadata sets.

[0246] The Start Event 2110 invokes Examine Dependen-
cies 2115, listing all MDS referenced in the query, as well as
their status. If gateway 2120 finds the dependent MDS not
up to date, the gateway calls itself; Refresh Metadata Sets
2055 subprocess for that particular metadata set. For
example, refreshing the E/R Entity MDS 1335 of FIG. 13,
the refresh subprocess may refresh qEquivalent MDS 1350.
[0247] Once all dependent MDS are up to date, the gate-
way starts Populate Records 2130, executing the M-lan-
guage query for Excel embodiments, followed by Update
Values 2135 to compute dependent columns. The output
object of the two tasks is the up to date Metadata Set 2140.

Jan. 13, 2022

Finally, the Check Consistency 2145 task validates the
metadata set and records an MDS Status 2150 before
terminating in the End Event 2155.

[0248] FIG. 22 shows the Load 2200 subprocess with its
two swimlanes for CODT 2205 and the external Data
Modeling Tool 2210. The Start Event 2215 passes the
control flow to the Refresh Metadata Sets 2055 subprocess
for the Tool-Specific Metadata Sets. Examine Interface 2220
checks configuration settings to determine whether the load
mode is manual or automated. For not automated, manual
mode, the gateway 2125 invokes Create Import Files 2230.
For PowerDesigner, the Import Files 2235 is the Ontology
MDS; for other tools, the task creates CSV files.

[0249] The Import 2240 task is external to CODT; within
the data modeling tool, a user manually imports the Ontol-
ogy MDS or CSV files, and stores the data model on a
non-transitory storage medium, as a file or in a repository
470.

[0250] For the automated mode, gateway 2125 invokes the
Create model objects 2245 task, which connects to the Data
Model Repository 470 (or tool), loading Tool-Specific Meta-
data Sets, creating model objects directly. Both tasks the
manual user Import 2235 and the automated Create Model
objects 2245 task exit with the End Event 2250.

[0251] The previous sections described the ontology to
data model transformation as a system, storage medium, and
method. Table 18 aligns the system components, with their
metadata sets, and subprocesses.

TABLE 18
Alignment
System Component Storage Medium Method
Component Metadata Set Subprocess
Extraction Ontology Extract Ontology

metadata

Transformation Entity-Relationship Transform Metadata

Load Data Modeling Tool- Load into Modeling
specific Tool
[0252] First, the Extraction Component uses Ontology

metadata sets to extract source ontology metadata.

[0253] Second, the Transformation component uses E/R
metadata sets to transform the metadata.

[0254] Third, the Load component uses tool-specific meta-
data sets to load data model metadata into the modeling tool.
[0255] Table 19 lists different ways to implement CODT,
broken down by categories Ontology Source, Transforma-
tion System, and target Data Model, each category having
three sub-categories.

TABLE 19

Implementation Embodiments

Data Model
Transformation System Data.
Ontology Source Application User Model Modeling Tool

Type Subtype Extraction OS type Interface Type Tool Interface
Ontology Development SPARQL MS MS-Excel White Conceptual ~ Power Import
platform Platform Windows Box Logical Designer

RDF Store, Sparx EA

Semantic

Endpoint

US 2022/0012426 Al

19

TABLE 19-continued

Jan. 13, 2022

Implementation Embodiments

Data Model
Transformation System Data

Ontology Source Application User Model Modeling Tool
Type Subtype Extraction OS type Interface Type Tool Interface
RDF/OWL Local Parser Unix ETL Guided Physical Other API
files World Wide Program Object

Web

[0256] The values of the sub-categories define a possible and second, to create an ontological representation of an

embodiment. For example, the First Embodiment, the MS-
Excel working product, has an Ontology Platform as its
source and uses SPARQL. The platform may be a develop-
ment platform (a.k.a. an ontology editor) or an RDF Store
with a Semantic Endpoint.

[0257] SPARQL is the recommended method to extract
ontology metadata. However, if an Ontology Platform is not
available, a Parser embodiment may extract ontology meta-
data parsing ontology files locally or from the World Wide
Web using their Namespace URI, populating the Ontology
MDS with the parsed ontology structure.

[0258] The first embodiment resides on MS-Windows
using MS-Excel. Other embodiments may be server-side on
UNIX using an ETL environment or a standalone program.
CODT Implementations as an object-orientated language
program, (e.g., Java, C++) should have classes for the
metadata sets, with attributes for the MDS columns, and a
population method to create objects of the class. For non-
Excel implementations, the MDS would best be database
tables. ETL implementations may provide 4GL languages
for a set-based transformation, similar to the MS-PowerQu-
ery M-language. The working product is a white box—a
user is free to inspect metadata sets, edit and review meta-
data. A guided user interface in MS-Excel protects the
workbook sheets. It enables scoping of source ontology
elements and controlled editing of values. For the Configu-
ration Component, this may comprise forms and controls to
enter settings and parameters. The working product creates
import files for PowerDesigner and Sparx EA data modeling
tools, and a user may use the data modeling tool importing
the files.

[0259] The target Data Model in the working product is a
Conceptual Data Model for PowerDesigner and a Logical
Data Model for Sparx EA, using the external data modeling
tool to import model metadata. Other model types comprise
of physical data models or object-orientated class models.
[0260] Some data modeling tools do not support metadata
import from files. However, most have an Application
Programming Interface (API). The working product creates
import files for PowerDesigner and Sparx EA data modeling
tools, and a user may use the data modeling tool importing
the files. In an automated mode, CODT connects to the data
modeling tool or metadata repository, directly creating data
model objects.

[0261] The Reverse Mode is a specific embodiment,
enabling a user to transform a data model into an ontology.
The use case for ontologies reverse-engineered from data
models is twofold: First, to enhance an enterprise ontology
with content from an enterprise or subject area data model,

operational system for knowledge graphs.

[0262] By design, the metadata sets are by-directional.
That means the MDS columns for Ontology and Data
Modeling Tool are the same, regardless of whether a [Load
or Extraction component utilizes the MDS. The columns of
the generic Entity-Relationship MDS do not change if the
set populates from a Tool-Specific MDS instead of the
Ontology MDS. Only the population queries and formulas
must change to enable a reverse direction.

[0263] Considering the System Component Diagram, FIG.
2, the external components, Ontology Platform 205, and
Data Modeling Tool 210 switch places. The Extraction
component 225 accesses the Data Modeling Tool’s Import
Interface 220, and the Load component accesses the
SPARQL Interface 215.

[0264] FIG. 23 is a BPMN diagram of the Reverse Trans-
formation Process 2300, which has two swimlanes, CODT
2305, and external Tools and Platforms 2310. The Start
Event invokes Configure Transformation 2320, which has
the same environment, data model, and ontology platform
parameters, but different transformation and naming rules.
As a default, entities transform into classes, data items into
data properties, extended attributes into annotation proper-
ties. A user may configure settings to transform attributes
into class restrictions, the default preserving cardinalities or
domains. The user must specify object naming rules trans-
forming code and name into ontology Prefix and Localname.
The default for names is a Camel Code string function,
removing spaces from the logical data model name. The user
can save the Configuration 2325 and Extract Data Model
Metadata 2330 invokes. A premise of the reverse mode is
that data modeling tools can export metadata in the Tool-
Specific MDS format. Indeed, all data modeling tools have
list report functionality to generate custom Data Model List
Reports 2335 in MS-Excel or CSV. For Data a Model
Platform 2340, CODT can use the API or query the under-
lying database. The output object of the task is the Data
Model Metadata Set 2345.

[0265] Transform Metadata 2350 in reverse mode per-
forms minimal transformations on the extracted data model
metadata, like changing the Inheritance MDS 1725 of FIG.
17 into Supertype MDS 1510 of FIG. 15 for PowerDesigner.
The task saves the Entity-Relationship MDS 2355, which is
the input data object for the subsequent Load Into Ontology
2360 task. The description of Configure Transformation
2320 options already listed the default transformations.
Notably, the target ontology must define the Prefix, making
the Namespace of Table 2 and others redundant. The task
creates the Ontology Metadata Set 2370 and generates

US 2022/0012426 Al
20

SPARQL CONSTRUCT statements from the Ontology
MDS. In manual mode, the user can execute the CON-
STRUCTs to create elements of the ontology or use platform
functionality for bulk inserts. In automated mode, CODT
connects a Target Ontology RDF Store 2365 or SPARQL
endpoint and assets the triples.

[0266] The sample SPARQL code below creates three
classes.

CONSTRUCT {

fibo-be-corp-corp:Board Agreement rdfitype owl:Class.
fibo-be-corp-corp:JointStockCompany rdfitype owl:Class .
fibo-be-corp-corp:PrivatelyHeldCompany rdfitype owl:Class.

%VHERE 1

[0267] Whereas the SPARQL SELECT statements join
triples to return a result set in relational form, the Reverse
Mode Load breaks down the relational record into triples.
[0268] This section concludes the detailed specification of
the Configurable Ontology to Data Model Transformation.

I claim:

1. A system, comprising:

a non-transitory storage medium that stores computer-
executable components and a processor that executes
the computer-executable components stored on the
non-transitory storage medium, wherein the computer-
executable components comprise:

a configuration component that enables a user to con-
figure settings for a transformation of elements of an
ontology into elements of a data model;

an extraction component that retrieves ontology meta-
data and converts ontology metadata into ontology
metadata sets;

a transformation component that transforms the ontol-
ogy metadata sets into entity-relationship metadata
sets and the entity-relationship metadata sets into
modeling tool-specific metadata sets; and

whereby said system transforms ontology metadata
into modeling tool-specific metadata according to
configuration settings.

2. The system of claim 1, wherein the extraction compo-
nent can retrieve the ontology metadata from an ontology
platform executing SPARQL metadata queries.

3. The system of claim 1, wherein the extraction compo-
nent can retrieve ontology metadata by parsing ontology
files.

4. The system of claim 1, further comprising:

a load component that can connect to a modeling tool and
populate a data model with data model elements from
the modeling tool-specific metadata set.

5. The system of claim 1, further comprising:

a user interface component that enables the user to select
preview and modify transformation rules;

specity a scope of source ontology elements;

review metadata; and

correct and override metadata.

6. The system of claim 1, further comprising:

an analytics component that enables the user to submit
analytical queries to the extraction component for
execution on an ontology platform retrieve analytical
query results from the extraction component, present

Jan. 13, 2022

query results in reports, and promote query results as
configuration parameters to the configuration compo-
nent.

7. A non-transitory storage medium storing ontology
metadata sets, entity-relationship metadata sets, and data
modeling tool-specific metadata sets coupled with machine-
readable instructions that cause one or more processors to:

enable a user to configure settings for a transformation of

elements of an ontology into elements of a data model;
populate ontology metadata sets with extracted ontology
metadata;
populate entity-relationship metadata sets by transform-
ing metadata from the ontology metadata sets;

populate data modeling tool-specific metadata sets by
transforming metadata from a generic entity-relation-
ship metadata set; and

whereby a coupling of a metadata sets and instructions

makes the metadata sets self-populating, reducing the
complexity of machine-readable instructions.

8. The non-transitory storage medium of claim 7, wherein
the instructions populate the ontology metadata sets with
extracted ontology metadata further comprise instructions
that cause the one or more processors to:

retrieve ontology metadata from an ontology platform by

executing SPARQL metadata queries.

9. The non-transitory storage medium of claim 7, wherein
the instructions populate the ontology metadata sets with
extracted ontology metadata further comprise instructions
that cause the one or more processors to:

parse ontology files to retrieve ontology metadata.

10. The non-transitory storage medium of claim 7,
wherein the instructions populate data modeling tool-spe-
cific modeling tool-specific metadata sets by transforming
metadata from the generic entity-relationship metadata set.
further comprise instructions that cause the one or more
processors to:

connect to a data modeling tool;

create or open a data model specified in the configuration

settings; and

create elements in the data model.

11. The non-transitory storage medium of claim 7,
wherein the instructions to enable a user to configure set-
tings for a transformation of elements of the ontology into
elements of a data model further comprise instructions that
cause the one or more processors to enable the user to:

select, preview and modify transformation rules;

specify a scope of source ontology metadata;

review the metadata; and

correct and override metadata.

12. The non-transitory storage medium of claim 7,
wherein the instructions to enable a user to configure set-
tings for a transformation of elements of the ontology into
elements of a data model further comprise instructions that
cause the one or more processors to enable the user to:

submit analytical queries to an extraction component for

execution on an ontology platform;

retrieve analytical query results from the extraction com-

ponent and present query results in reports; and

promote query results as configuration parameters to a

configuration component.

13. The non-transitory storage medium of claim 7,
wherein machine-readable instructions further cause the one
or more processors to:

US 2022/0012426 Al

enable a user to configure settings for a transformation of
elements of a data model into elements of an ontology;

populate the modeling tool-specific metadata sets with
extracted data model metadata;

populate the entity-relationship metadata sets by trans-
forming metadata from the modeling tool-specific
metadata sets; and

populate the ontology metadata sets by transforming
metadata from the entity-relationship metadata sets;
and

generating SPARQL. construct statements to create an
ontology schema; and

whereby a coupling of metadata sets and computer
instructions makes said metadata sets self-populating in
a reverse direction, transforming data model metadata
into ontology metadata.

14. A computer-implemented method, comprising:

enabling a user to configure settings for a transformation
of elements of an ontology into elements of a data
model,;

extracting ontology metadata and convert the ontology
metadata into ontology metadata sets;

transforming the ontology metadata sets into entity-rela-
tionship metadata sets; and

transforming the entity-relationship metadata sets into
modeling tool-specific metadata sets;

whereby a user can transform an ontology into a data
model.

15. The computer-implemented method of claim 14,

wherein extracting ontology metadata and converting the
ontology metadata into ontology metadata sets further com-
prises:

connecting to an ontology platform;

opening a source ontology specified in the configuration
settings;

executing SPARQL metadata queries; and

retrieving query ontology metadata.

16. The computer-implemented method of claim 14,

wherein converting the ontology metadata into ontology
metadata sets further comprises:

opening an ontology file or Namespace URI;

parsing the ontology to extract ontology metadata; and

analyzing parsed ontology structure and populate the
ontology metadata sets.

Jan. 13, 2022

17. The computer-implemented method of claim 14,
wherein transforming the entity-relationship metadata sets
into modeling tool-specific metadata sets further comprises:

connecting to a data modeling tool;

creating or opening the data model specified in the

configuration settings; and

loading tool-specific metadata sets into the data modeling

tool, creating elements in the data model.

18. The computer-implemented method of claim 14,
wherein enabling a user to configure settings for a transfor-
mation of elements of the ontology into elements of a data
model further comprises:

selecting, previewing and modifying transformation

rules;

specifying a scope of source ontology elements;

reviewing metadata; and

correcting and overriding the metadata.

19. The computer-implemented method of claim 14,
wherein enabling a user to configure settings for a transfor-
mation of elements of the ontology into elements of a data
model further comprises:

submitting analytical queries to an extraction component

for execution on an ontology platform;

retrieving analytical query results from the extraction

component and presenting results in reports; and

promoting query results as configuration parameters to a

configuration component.

20. The computer-implemented method of claim 14, fur-
ther comprising:

enabling a user to configure settings for a transformation

of elements of a data model into elements of an
ontology;

generating a list report in a data modeling tool to populate

the modeling tool-specific metadata sets;
transforming the modeling tool-specific metadata sets into
entity-relationship metadata sets;

transforming the entity-relationship metadata sets into

ontology metadata sets;

executing SPARQL construct statements on an ontology

platform to create the ontology; and

whereby a user can utilize metadata sets in a reverse

direction and transform a data model into an ontology.

#* #* #* #* #*

